We report on the X-ray studies of freely suspended hexatic films of three different liquid crystal compounds. By applying angular X-ray cross-correlation analysis (XCCA) to the measured diffraction patterns the parameters of the bond-orientational (BO) order in the hexatic phase were directly determined. The temperature evolution of the BO order parameters was analyzed on the basis of the multicritical scaling theory (MCST). Our results confirmed the validity of the MCST in the whole temperature range of the existence of the hexatic phase for all three compounds. The temperature dependence of the BO order parameters in the vicinity of the hexatic-smectic transition was fitted by a conventional power law with a critical exponent β ≈ 0.1 of extremely small value. We found that the temperature dependence of higher order harmonics of the BO order scales as the powers of the first harmonic, with an exponent equal to the harmonic number. This indicates a nonlinear coupling of the BO order parameters of different order. We demonstrate that compounds of various compositions, possessing different phase sequences at low temperatures, display the same thermodynamic behavior in the hexatic phase and in the vicinity of the smectic-hexatic phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00343aDOI Listing

Publication Analysis

Top Keywords

hexatic phase
12
order parameters
12
order
8
bond-orientational order
8
hexatic-smectic transition
8
temperature dependence
8
phase
5
structural studies
4
studies bond-orientational
4
order hexatic-smectic
4

Similar Publications

The theoretical study of instabilities, thermal fluctuations, and topological defects in the crystal-rotator-I-rotator-II (X-R-R) phase transitions of -alkanes has been conducted. First, we examine the nature of the R-R phase transition in nanoconfined alkanes. We propose that under confined conditions, the presence of quenched random orientational disorder makes the R phase unstable.

View Article and Find Full Text PDF

Molecular arrangement in the chiral smectic phases of the glassforming (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]benzoate is investigated by X-ray diffraction. An increased correlation length of the positional short-range order in the supercooled state agrees with the previous assumption of the hexatic smectic phase. However, the registered X-ray diffraction patterns are not typical for the hexatic phases.

View Article and Find Full Text PDF

Intercellular friction and motility drive orientational order in cell monolayers.

Proc Natl Acad Sci U S A

October 2024

Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

Spatiotemporal patterns in multicellular systems are important to understanding tissue dynamics, for instance, during embryonic development and disease. Here, we use a multiphase field model to study numerically the behavior of a near-confluent monolayer of deformable cells with intercellular friction. Varying friction and cell motility drives a solid-liquid transition, and near the transition boundary, we find the emergence of local nematic order of cell deformation driven by shear-aligning cellular flows.

View Article and Find Full Text PDF

Complex plasmas consist of ionized gas and charged solid microparticles, representing the plasma state of soft matter. We apply machine learning methods to investigate a melting transition in a two-dimensional complex plasma. A convolutional neural network is constructed and trained with the numerical simulation.

View Article and Find Full Text PDF

Hole statistics of equilibrium 2D and 3D hard-sphere crystals.

J Chem Phys

August 2024

Department of Chemistry, Department of Physics, Princeton Institute of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

The probability of finding a spherical "hole" of a given radius r contains crucial structural information about many-body systems. Such hole statistics, including the void conditional nearest-neighbor probability functions GV(r), have been well studied for hard-sphere fluids in d-dimensional Euclidean space Rd. However, little is known about these functions for hard-sphere crystals for values of r beyond the hard-sphere diameter, as large holes are extremely rare in crystal phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!