On the validity of linear response approximations regarding the solvation dynamics of polyatomic solutes.

Phys Chem Chem Phys

University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 19, A-1090 Vienna, Austria.

Published: May 2017

The time-dependent fluorescence of a chromophore can be calculated from either nonequilibrium simulations, or, as long as linear response theory holds true, from equilibrium solvent fluctuations in the ground or excited state if the perturbation inflicted by the chromophore is small. The assumption of Gaussian statistics, in contrast, links the nonequilibrium dynamics to solvent fluctuations solely in the excited state, as long as the energy gap distribution is Gaussian throughout the process. The validity of linear response theories on the ground and excited state surface as well as Gaussian statistics is thoroughly tested in this study by calculating the time-dependent Stokes shift of different benzene-like solutes. The effect of the size of change in partial charges of the solute, the multipolar order of charge distribution, the direction of change, as well as the influence of different solvents on the validity of linear response theory is examined by simulating 54 different systems. Calculation of the Gaussian character of the energy distribution in equilibrium, as well as the time-evolution of the peak width in the nonequilibrium simulation sheds light on the validity of Gaussian statistics in a nonstationary regime. We observed that a large intermediate broadening of the width of the energy distribution correlates with a failure of correlation functions to describe the nonequilibrium event. These results are accompanied by analysis of higher order correlation functions, as well as the structure of the solvents water, acetonitrile and methanol around the solute, to yield a comprehensive view, as well as general guidelines, on when and why equilibrium solvent fluctuations can correctly depict solvation dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp08575jDOI Listing

Publication Analysis

Top Keywords

linear response
16
validity linear
12
solvent fluctuations
12
excited state
12
gaussian statistics
12
solvation dynamics
8
response theory
8
equilibrium solvent
8
ground excited
8
energy distribution
8

Similar Publications

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output.

View Article and Find Full Text PDF

Associations of the serum 25-hydroxyvitamin D with mortality among patients in osteopenia or osteoporosis.

Bone

January 2025

Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China; Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China. Electronic address:

Purpose: The correlation between serum vitamin D and mortality in patients with osteopenia or osteoporosis remains unclear. Therefore, this study examined the relationship between serum 25-hydroxy vitamin D [(25(OH)D] and mortality in patients with osteopenia or osteoporosis.

Methods And Result: This prospective cohort study included patients with osteopenia or osteoporosis from the National Health and Nutrition Examination Survey from 2001 to 2018.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Revisiting secondary model features for describing the shoulder and lag parameters of microbial inactivation and growth models.

Int J Food Microbiol

January 2025

Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.

The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!