Characterization and Modeling of Polycyclic Aromatic Compound Uptake into Spruce Tree Wood.

Environ Sci Technol

Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin St. Toronto, Ontario M3H 5T4, Canada.

Published: May 2017

This study highlights the potential of uptake into tree inner wood via direct-transfer through bark, as one contributing mechanism to describe atmospheric uptake of polycyclic aromatic compounds (PACs) into trees. The uptake of PACs into blue spruce tree wood was measured, with wood-air partition coefficients (K) determined for five PACs. A correlation between the octanol-air partition coefficient (K) and K for these five chemicals was determined and the K for 43 PACs were derived. A ratio of solubility (activity) difference between tree wood and octanol was also determined for these chemicals from this correlation. Finally, the derived K values were further applied to calculate an air volume sampled by the inner wood layer (cambium) of a tree during a one year growth (sampling) period. PACs with a log K > 6 remained in the linear sampling phase over one year of sampling. The results further highlight the important sink that forests provide for atmospheric organic chemicals which should be considered for emissions monitoring and impact assessments from destructive events such as forest fires or clear felling of forests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b01297DOI Listing

Publication Analysis

Top Keywords

tree wood
12
polycyclic aromatic
8
spruce tree
8
inner wood
8
determined pacs
8
tree
5
wood
5
pacs
5
characterization modeling
4
modeling polycyclic
4

Similar Publications

Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary).

Plants (Basel)

January 2025

Department of Landscape Protection and Reclamation, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.

The world's big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive.

View Article and Find Full Text PDF

The characteristics of heartwood and sapwood not only reflect tree growth and site quality but also provide insights into habitat changes. This study examines the natural Oliv. forest in the Arghan section of the lower Tarim River, comparing the heartwood and sapwood characteristics of at different distances from the river, as well as at varying trunk heights and diameters at breast height (DBH).

View Article and Find Full Text PDF

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

Subcortical beetle communities interact with a wide range of semiochemicals released from different sources, including trees, fungi, and bark beetle pheromones. While the attraction of bark beetles, their insect predators, and competitors to bark beetle pheromones is commonly studied, the attraction of these beetle communities to other sources of semiochemicals remains poorly understood. We tested the attraction of bark and wood-boring beetles and their predators to host stress volatiles, fungal volatiles, and a mountain pine beetle lure in the field.

View Article and Find Full Text PDF

Neohesperidin Mitigates High-Fat-Diet-Induced Colitis In Vivo by Modulating Gut Microbiota and Enhancing SCFAs Synthesis.

Int J Mol Sci

January 2025

National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, China.

Previous research has consistently shown that high-fat diet (HFD) consumption can lead to the development of colonic inflammation. Neohesperidin (NHP), a naturally occurring flavanone glycoside in citrus fruits, has anti-inflammatory properties. However, the efficacy and mechanism of NHP in countering prolonged HFD-induced inflammation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!