End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388843 | PMC |
http://dx.doi.org/10.1038/srep46038 | DOI Listing |
PLoS One
January 2025
Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.
Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
Purpose: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma that develops sporadically or in Neurofibromatosis type 1 patients. Its development is marked by the inactivation of specific tumor suppressor genes (TSGs): NF1, CDKN2A and SUZ12EED (Polycomb Repressor Complex 2). Each TSG loss can be targeted by particular drug inhibitors and we aimed to systematically combine these inhibitors, guided by TSG inactivation status, to test their precision medicine potential for MPNSTs.
View Article and Find Full Text PDFCancer Discov
December 2024
University of Texas Southwestern Medical Center, Dallas, TX, United States.
Peripheral nerves promote mouse bone marrow regeneration by activating b2 and b3 adrenergic receptor signaling, raising the possibility that non-selective b blockers could inhibit engraftment after hematopoietic cell transplants (HCTs). We observed no effect of b blockers on steady-state mouse hematopoiesis. However, mice treated with a non-selective b blocker (carvedilol), but not a b1-selective inhibitor (metoprolol), exhibited impaired hematopoietic regeneration after syngeneic or allogeneic HCTs.
View Article and Find Full Text PDFElife
January 2025
Department of Neurosurgery, Washington University School of Medicine, Springfield, United States.
Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.
View Article and Find Full Text PDFBackground: Despite an aging population, it remains challenging to reliably differentiate between loss of cognitive function associated with normal aging and cognitive decline associated with pathologic processes. With growing interest in using retinal and optic nerve biomarkers to diagnose neurodegenerative diseases, characterization of the velocity of normal retinal age-related changes will further our understanding. We evaluated longitudinal microvascular changes in cognitively normal older adults using optical coherence tomography (OCT) and OCT angiography (OCTA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!