Fluorescent Pseudomonas, aerobic, Gram-negative bacteria possess many traits that make them well suited as biocontrol and growth promoting agents. Our study revealed that isolates vary in mechanisms involved in the antagonist interactions against pathogen and growth stimulatory effects on host plant. Most of the potential antagonistic fluorescent Pseudomonas identified were avid iron chelators (P233, P201, 176, P76 and, P76). Wide variation in ACCd enzyme production was observed. ACCd enzyme assay tested P141 > P247 > P126, as potential ACCd enzyme producer. Cynogenic fluorescent Pseudomonas isolates P76 and P124 exerted strong inhibitory against S. rolfsii. However, another cynogenic fluorescent Pseudomonas P179 had no influence against R solani and S. rolfsii which remains unexplained. Noticeable crop specific plant growth stimulation exerted by different fluorescent Pseudomonas was observed on wheat (P124), chickpea (P72), lathyrus (P85, P216), greengram (P11), blackgram (P99, P233); bottlegourd (P248, P167); rice (P176, P247).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388656 | PMC |
http://dx.doi.org/10.1007/s13205-017-0602-3 | DOI Listing |
Front Microbiol
December 2024
National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China.
Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of strain MG-2 to treat Liberibacter asiaticus (Las)-infected ' 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
J Fluoresc
December 2024
National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
Fluorescence spectroscopy employed to compute the antibacterial potential of pure ZnO and Titania (TiO) loaded ZnO (TiO: 2%, 4%, 6%, and 8%) electrospun nanofibers. The study of electrospun nanofibers followed by their structural, morphological and antibacterial properties has been revealed through fluorescence spectroscopy. X-ray diffraction (XRD) analysis of nanofibers calcinated at 600 °C revealed the presence of polycrystalline wurtzite hexagonal crystallographic planes of ZnO with preferred orientation along (101) direction.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.
View Article and Find Full Text PDFJACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!