Plasmon rulers (PRs) exploit the potential of plasmon coupling between individual pairs of noble metal nanoparticles in biological processes, especially single-molecule detection. Herein, for the first time, we report a strategy based on Ag PRs for in situ monitoring of the extension process of telomerase primer (TSP) activated by a single telomerase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc00626h | DOI Listing |
Nano Lett
September 2024
Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Single-molecule fluorescence has revealed a wealth of biochemical processes but does not give access to submillisecond dynamics involved in transient interactions and molecular dynamics. Here we overcome this bottleneck and demonstrate record-high photon count rates of >10 photons/s from single plasmon-enhanced fluorophores. This is achieved by combining two conceptual novelties: first, we balance the excitation and decay rate enhancements by the antenna's volume, resulting in maximum fluorescence intensity.
View Article and Find Full Text PDFNanoscale
June 2024
Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02459, USA.
Plasmonic molecules are discrete assemblies of noble metal nanoparticles (NPs) that are of interest as transducers in optical nanosensors. So far, NPs with diameters of ∼40 nm have been the preferred building blocks for plasmonic molecules intended as optical single molecule sensors due to difficulties associated with detecting smaller NPs through elastic scattering in conventional darkfield microscopy. Here, we apply 405 nm, 445 nm two-color interferometric scattering (iSCAT) microscopy to characterize polyethylene glycol (PEG) tethered dimers of 10 nm and 20 nm Ag NPs and their monomers.
View Article and Find Full Text PDFWe computationally and analytically investigate the plasmon near-field coupling phenomenon and the associated universal scaling behavior in a pair of coupled shifted-core coaxial nano-cavities. Each nano-cavity is composed of an InGaAsP gain medium sandwiched between a silver (Ag) core and an Ag shell. The evanescent coupling between the cavities lifts the degeneracy of the cut-off free transverse electromagnetic (TEM) like mode.
View Article and Find Full Text PDFMikrochim Acta
May 2024
Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC, Canada.
The release of tire wear substances in the environment is raising concerns about potential impacts on aquatic ecosystems. The purpose of this study was to develop a quick and inexpensive screening test for the following tire wear substances: 6-phenylphenyldiamine quinone (6-PPD quinone), hexamethoxymethylmelamine (HMMM), 1-3-diphenylguanidine (1,3-DPG), and melamine. A dual strategy consisting of nanogold (nAu) signal intensity and the plasmonic ruler principle was used based on the spectral shift from the unaggregated free-form nAu from 525 nm to aggregated nAu at higher wavelengths.
View Article and Find Full Text PDFNano Lett
December 2023
Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
Novel high-throughput protein detection technologies are critically needed for population-based large-scale SARS-CoV-2 antibody detection as well as for monitoring quality and duration of immunity against virus variants. Current protein microarray techniques rely heavily on labeled transduction methods that require sophisticated instruments and complex operations, limiting their clinical potential, particularly for point-of-care (POC) applications. Here, we developed a label-free and naked-eye readable microarray (NRM) based on a thickness-sensing plasmon ruler, enabling antibody profiling within 30 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!