A guinea pig model of Zika virus infection.

Virol J

Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.

Published: April 2017

Background: Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemic of Zika virus (ZIKV). Here we report that immunocompetent guinea pigs are susceptible to infection by a contemporary American strain of ZIKV.

Methods: Dunkin-Hartley guinea pigs were inoculated with 10 plaque-forming units of ZIKV via subcutaneous route and clinical signs were observed. Viremia, viral load in the tissues, anti-ZIKV neutralizing antibody titer, and protein levels of multiple cytokine and chemokines were analyzed using qRT-PCR, plaque assay, plaque reduction neutralization test (PRNT) and multiplex immunoassay.

Results: Upon subcutaneous inoculation with PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in the whole blood and serum using qRT-PCR and plaque assay. Anti-ZIKV neutralizing antibody was detected in the infected animals using PRNT. ZIKV infection resulted in a dramatic increase in protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV replication was observed in spleen and brain, with the highest viral load in the brain. This data demonstrate that after subcutaneous inoculation, the contemporary ZIKV strain is neurotropic in guinea pigs.

Conclusion: The guinea pig model described here recapitulates various clinical features and viral kinetics observed in ZIKV-infected patients, and therefore may serve as a model to study ZIKV pathogenesis, including pregnancy outcomes and for evaluation of vaccines and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387205PMC
http://dx.doi.org/10.1186/s12985-017-0750-4DOI Listing

Publication Analysis

Top Keywords

guinea pigs
12
guinea pig
8
pig model
8
zika virus
8
zikv
8
clinical signs
8
viral load
8
anti-zikv neutralizing
8
neutralizing antibody
8
protein levels
8

Similar Publications

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

Natural products and botanicals continue to play a very important role in the development of cosmetics worldwide. The chemical constituents of a fine active fraction of the whole plant extract of Walp., and the tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory and antioxidant activities of this fraction were investigated.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac.

View Article and Find Full Text PDF

Effects of cytochalasin D on relaxation process of skinned taenia cecum and carotid artery from guinea pig.

J Physiol Sci

January 2025

Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, 116-8551, Tokyo, Japan. Electronic address:

Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca removal after Ca-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!