A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines. | LitMetric

A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines.

J Hypertens

aIRCCS Neuromed, Pozzilli, Isernia bDepartment of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome cDepartment of Pharmacological and Biomolecular Sciences, University of Milan dCentro Cardiologico Monzino IRCCS, Milan eDepartment of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.

Published: September 2017

AI Article Synopsis

  • UCP2, a mitochondrial transporter, is downregulated in kidneys of high-salt-fed stroke-prone hypertensive rats, leading to increased renal damage.
  • The study aimed to investigate the relationship between UCP2 expression and renal damage in different genetic lines of rats, using a high-salt diet for 8 weeks to analyze various biological markers.
  • Results showed that reduced UCP2 levels correlate with increased inflammation, oxidative stress, and renal injury, indicating that maintaining UCP2 expression could protect against salt-induced kidney damage.

Article Abstract

Objectives: Uncoupling protein-2 (UCP2), a mitochondrial anion transporter involved in mitochondrial uncoupling, limiting reactive oxygen species formation, is significantly downregulated in kidneys of high-salt-fed stroke-prone spontaneously hypertensive rat (SHRSP), where it associates with increased renal damage occurrence.

Methods: We aimed at establishing whether UCP2 differential expression associates with renal damage in two stroke-resistant spontaneously hypertensive rat (SHRSR)/SHRSP-derived stroke congenic lines. For this purpose, SHRSR, SHRSP, and two reciprocal stroke congenic lines carrying the (D1Rat134-Mt1pa) segment of chromosome 1 were fed with Japanese style diet for 8 weeks. At 4, 6, and 8 weeks of Japanese diet, kidneys were removed and analyzed for UCP2 gene and protein expression [UCP2 maps within (D1Rat134-Mt1pa)]; nuclear factor kappa-light-chain-enhancer of activated B cells protein expression; oxidized total protein levels; mitochondrial function; gene expression of cubulin, megalin, and nephrin. At 6 and 8 weeks of Japanese diet, histological damage and percentage of high molecular weight urinary proteins excretion were assessed.

Results: Introgression of UCP2 in the SHRSP configuration within the SHRSR genome led to UCP2 downregulation upon Japanese diet, as compared with the SHRSR, with significantly reduced ATP levels, increased rate of inflammation, oxidative stress, renal damage, and excretion of high molecular weight proteins. The opposite phenomena were observed in the reciprocal congenic line, compared with the SHRSP. In vitro, high-NaCl medium led to UCP2 downregulation, increased apoptosis/necrosis, and reduced viability in primary renal proximal tubular epithelial cells isolated from SHRSP. Exposure of the SHRSP/proximal tubular epithelial cells to recombinant UCP2 rescued the high-salt-dependent deleterious effects.

Conclusion: A differential UCP2 expression associates with different degree of renal damage upon Japanese diet in two SHRSR/SHRSP-derived stroke congenic lines through modulation of mitochondrial function, inflammation, and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000001374DOI Listing

Publication Analysis

Top Keywords

renal damage
20
spontaneously hypertensive
16
stroke congenic
16
congenic lines
16
japanese diet
16
differential expression
8
uncoupling protein-2
8
associates renal
8
damage stroke-resistant
8
stroke-resistant spontaneously
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!