Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory disease of the nose and paranasal sinuses that presents without or with nasal polyps (CRSwNP). Notable features of CRSwNP are the frequent presence of type 2 allergic inflammation and high prevalence of Staphylococcus aureus (SA) colonization. As inflammation persists, sinus tissue undergoes epithelial damage and repair along with polyp growth, despite active medical management. Because one feature of damaged tissue is enhancement of growth factor signaling, we evaluated the presence of epidermal growth factor receptor (EGFR) ligands and matrix metalloproteinases (MMPs) in CRS. The objectives of this study were to analyze the expression of EGFR ligands and MMPs in patients with CRS and to investigate the possible role of SA on epithelial activation. Sinonasal tissues were collected during surgery from control subjects and patients with CRS. Tissues were processed as described previously for analysis of mRNA (RT-PCR) and proteins (ELISA) for the majority of EGFR ligands within the tissue extracts. CRS tissue was used for evaluation of the distribution of epiregulin (EREG), an EGFR ligand, and MMP-1 by immunohistochemistry. In parallel studies, expression of these genes and proteins was analyzed in cultured primary airway epithelial cells. Elevated expression of EREG and MMP-1 mRNA and protein was observed in uncinate and polyp tissue from patients with CRSwNP. Immunohistochemistry study of clinical samples revealed that airway epithelial cells expressed both of these proteins. Cultured primary human airway epithelial cells expressed MMP-1, and MMP-1 was further induced by stimulation with EREG or heat-killed SA (HKSA). The induction of MMP-1 by HKSA was blocked by an antibody against EREG, suggesting that endogenous EREG induces MMP-1 after stimulation with HKSA. EREG and MMP-1 were found to be elevated in nasal polyp and uncinate tissues in patients with CRSwNP. Elevated expression of EREG and MMP-1 may be related to polyp formation in CRS, and colonization of SA might further enhance this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625226PMC
http://dx.doi.org/10.1165/rcmb.2016-0325OCDOI Listing

Publication Analysis

Top Keywords

growth factor
12
egfr ligands
12
airway epithelial
12
epithelial cells
12
ereg mmp-1
12
epidermal growth
8
factor receptor
8
chronic rhinosinusitis
8
patients crs
8
mmp-1
8

Similar Publications

Population pharmacokinetics of erlotinib in patients with non-small cell lung cancer (NSCLC): A model-based meta-analysis.

Comput Biol Med

January 2025

Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea; Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea; Department of Integrative Biotechnology, Yonsei University, Incheon, Republic of Korea. Electronic address:

Background: Erlotinib is a potent first-generation epidermal growth factor receptor tyrosine kinase inhibitor. Due to its proximity to the upper limit of tolerability, dose adjustments are often necessary to manage potential adverse reactions resulting from its pharmacokinetic (PK) variability.

Methods: Population PK studies of erlotinib were identified using PubMed databases.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!