We report a scandium oxyhydride BaScOH prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScOH adopts the ideal cubic perovskite structure (Pm3̅m), where oxide (O) and hydride (H) anions are disordered. H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScOH octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H conductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b02834DOI Listing

Publication Analysis

Top Keywords

cubic perovskite
8
oxyhydride bascoh
8
pressure-stabilized cubic
4
perovskite oxyhydride
4
bascoh report
4
report scandium
4
scandium oxyhydride
4
bascoh prepared
4
prepared solid
4
solid state
4

Similar Publications

We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds.

View Article and Find Full Text PDF

Hybrid perovskites exhibit complex structures and phase behavior under different thermodynamic conditions and chemical environments, the understanding of which continues to be pivotally important for tailoring their properties toward improved operational stability. To this end, we present for the first time a comprehensive neutron and synchrotron diffraction investigation over the pressure-temperature phase diagram of the paradigmatic hybrid organic-inorganic perovskite methylammonium lead iodide (MAPbI). This ambitious experimental campaign down to cryogenic temperatures and tens of kilobars was supported by extensive molecular dynamics simulations validated by the experimental data, to track the structural evolution of MAPbI under external physical stimuli at the atomic and molecular levels.

View Article and Find Full Text PDF

Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport.

View Article and Find Full Text PDF

The solar sector is shifting towards lead-free, inorganic cubic halide perovskites due to their superior structural, electronic, and optoelectronic properties. This study uses density functional theory (DFT) to examine the structural, electronic, and optical properties of XSnBr (X = Cs, Rb, K, Na) and assesses their photovoltaic performance through the Solar Cell Capacitance Simulator - One Dimensional (SCAPS-1D). The results show each material has a direct band gap at the Γ-point, low optical losses, and high absorption, making them promising for solar and optoelectronic applications.

View Article and Find Full Text PDF

Multicomponent oxides often have exceptional thermal stability and interesting electronic properties. The present work presents the thermoelectric and electrical properties of the Ba(ZrHfSnTiFe)O and Ba(ZrHfSnTiCoCeBiFeYZn)O multicomponent perovskites. Single-phase cubic perovskites were synthesized using the solid-state reaction method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!