Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(-glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408237PMC
http://dx.doi.org/10.3390/md15040091DOI Listing

Publication Analysis

Top Keywords

composite microparticles
20
wound dressing
8
high hydrophility
8
alg/pga composite
8
double network
8
network structure
8
carboxylate groups
8
groups alg
8
alg pga
8
swelling behavior
8

Similar Publications

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF

The human microbiota constitute a very complex ecosystem of microorganisms inhabiting both the inside and outside of our bodies, in which health maintenance and disease modification are the main regulatory features. The recent explosion of microbiome research has begun to detail its important role in neurological health, particularly concerning cerebral small vessel disease (CSVD), a disorder associated with cognitive decline and vascular dementia. This narrative review represents state-of-the-art knowledge of the intimate, complex interplay between microbiota and brain health through the gut-brain axis (GBA) and the emerging role of glymphatic system dysfunction (glymphopathy) and circulating cell-derived microparticles (MPs) as mediators of these interactions.

View Article and Find Full Text PDF

This manuscript highlights the behavior of biodegradable polymers (PLA and HD PLA Green) coated with two distinct bronze alloy powders, Metco 51F-NS (Cu 9.5Al 1.2Fe) and Metco 445 (Cu 9.

View Article and Find Full Text PDF

Radiative cooling is an excellent strategy for mitigating global warming, by enhancing heat fluxes away from the Earth, thus balancing the Earth's heat flow. However, for randomly particle-dispersed radiative cooling materials, the particle content as high as 94-96 wt % or 60 vol %, far exceeds the critical pigment percentage (40-50%) of traditional coatings, preventing its large-scale application. Here, inspired by particle deposition under gravity in solution, we demonstrate an auto-deposited SiO composite radiative cooling coating (ADRC) which reduces the amounts of particles required and lowers costs.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!