Tuning the Photophysical Properties of Photostable Benzo[b]phosphole P-Oxide-Based Fluorophores.

Inorg Chem

Institute of Transformative Bio-Molecules (WPI-ITbM) and ‡Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.

Published: August 2017

We previously reported that constrained 2-phenylbenzo[b]phosphole P-oxides bearing a diphenylamino group show high photostability and thus are promising dyes for fluorescence imaging. Herein we investigated the impact of the bridging moieties on their photophysical properties. A series of benzo[b]phosphole P-oxides constrained with various carbon or silicon bridges were synthesized. All of these compounds showed significant solvatochromism in fluorescence due to the intramolecular charge-transfer character in the excited state. The dipole moments in the excited state for the carbon-bridged derivatives are slightly larger than the silicon-bridged counterparts. Nevertheless, the latter compounds showed orange-red fluorescence in polar solvents with ca. 30 nm red-shifted maxima compared to the carbon analogues. Most importantly, the assessment of their photobleaching resistance revealed that the photostability of this compound series highly relies on the steric bulkiness of the bridging moiety, and even the silicon-bridged derivative can show outstanding photostability, as far as the silicon-bridging moiety has sufficient bulkiness.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b00658DOI Listing

Publication Analysis

Top Keywords

photophysical properties
8
excited state
8
tuning photophysical
4
properties photostable
4
photostable benzo[b]phosphole
4
benzo[b]phosphole p-oxide-based
4
p-oxide-based fluorophores
4
fluorophores reported
4
reported constrained
4
constrained 2-phenylbenzo[b]phosphole
4

Similar Publications

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

The electronic structure characteristics of bilayer graphyne, bilayer graphdiyne, and bilayer graphtriyne were systematically studied using molecular orbital (MO) analysis, density of states (DOS), and interaction region indicator (IRI) methods. The delocalization characteristics of the out-of-plane and in-plane π electrons (i.e.

View Article and Find Full Text PDF

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

A comprehensive DFT/TDDFT investigation into the influence of electron acceptors on the photophysical properties of ullazine-based D-π-A-π-A photosensitizers.

Sci Rep

January 2025

Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Fujian Provincial University), College of Environmental and Biological Engineering, Putian University, Putian, 351100, Fujian, China.

The type of electron acceptor group has a significant effect on the photovoltaic properties of solar cell sensitizers. In this study, on the basis of previous studies of the π1- and π2-linked groups of D-π1-A1-π2-A2-type sensitizers, the photoelectric properties of Ullazine-Based photosensitizing dyes were further optimized by adjusting the electron-absorbing groups at the A1 and A2 positions. DFT and TDDFT calculations revealed that substituting the A1 position with a BTD moiety led to a substantial increase in the light absorption capacity of the dye.

View Article and Find Full Text PDF

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!