Crystalline aluminum oxide is a brittle ceramic material. Here we show that individual alumina nanotubes with internal and external radii of ∼15 nm and ∼50 nm, respectively and lengths of the order of 100 μm can be readily separated from amorphous alumina membranes fabricated by a hard anodisation process under a magnetic field of up to 1.5 T. The ceramic nanotubes are extremely flexible and exhibit an exceptional plasticity of ±70% at room temperature without breaking. Elastic properties investigated by the double clamped beam method include a tensile strength of 4.1 GPa, corresponding to a breaking strain of 5%. These values are respectively 17 and 70 times greater than those of polycrystalline alumina fibres. The plasticity of anodic amorphous alumina helps explain the formation of ordered arrays of nanopores in the alumina membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr00095b | DOI Listing |
Polymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow 119121, Russia.
Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Materials and Surface Engineering, Faculty of Natural Science and Technology, Riga Technical University, Paula Valdena st. 3/7, LV-1048 Riga, Latvia.
Sintered porous mullite-alumina ceramics are obtained from the concentrated suspension of powdered raw materials such as kaolin, gamma and alpha AlO, and amorphous SiO, mainly by a solid-state reaction with the presence of a liquid phase. The modification of mullite ceramic is achieved by the use of micro- and nanosize TiO powders. The phase compositions were measured using an X-ray powder diffraction (XRD) Rigaku Ultima+ (Tokyo, Japan) and microstructures of the sintered specimens were analysed using scanning electron microscopy (SEM) Hitachi TM3000-TableTop (Tokyo, Japan).
View Article and Find Full Text PDFLangmuir
January 2025
Information Device Science Laboratory, Division of Materials Science, Nara Institute of Science and Technology, Ikoma City, Nara 630-0192, Japan.
Chemosphere
February 2025
Department of Botany, University of Gour Banga, Malda, 732103, West Bengal, India.
Biofabricated selenium nanoparticles (Se-NPs) and sodium nitroprusside-derived nitric oxide (NO) singly or in combination was evaluated to improve tolerance to aluminum (Al) stress in rice (Oryza sativa L. cv. Swarna Sub1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!