Micrographic surgery is currently the only technique which ensures complete removal of basal cell carcinomas. The major limitation is the high set-up cost, which is particularly connected with specialized training of surgeons, technicians and the set-up of a histology facility for frozen tissue sectioning and staining. In the long run, however, the cost of Mohs surgery per patient does not exceed that of conventional surgery. The technique is very safe and has multiple advantages over any other treatment modality. It achieves the highest cure rates, it is minimally invasive, it is tissue-sparing and it enables the optimal closure of the surgical defect. Mohs surgery is cost-effective, especially when dealing with poorly demarcated, high-risk, facial tumours, where it should be considered as the first choice of treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

basal cell
8
mohs surgery
8
[mohs surgery
4
surgery basal
4
cell carcinoma]
4
carcinoma] micrographic
4
surgery
4
micrographic surgery
4
surgery currently
4
currently technique
4

Similar Publications

Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy.

Stem Cell Res Ther

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.

View Article and Find Full Text PDF

Using a novel unsupervised method to integrate multi-omic data, we previously identified a breast cancer group with a poor prognosis. In the current study, we characterize the biological features of this subgroup, defined as the high-risk group, using various data sources. Assessment of three published hypoxia signatures showed that the high-risk group exhibited higher hypoxia scores (p < 0.

View Article and Find Full Text PDF

Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.

View Article and Find Full Text PDF

New insights into persistent corneal subepithelial infiltrates following epidemic keratoconjunctivitis: The first case report with ultrastructural and immunohistochemical investigations.

Acta Histochem

January 2025

Section of Anatomy and Histology, Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy. Electronic address:

Epidemic keratoconjunctivitis (EKC) is one of the most severe clinical manifestations of human adenovirus ocular surface infection, which may lead to the formation of subepithelial infiltrates (SEIs) in the anterior corneal stroma in 20-50 % of cases. SEIs may be asymptomatic or give rise to corneal aberrations and visual impairment for months or years after acute infection, despite treatments. Here, we describe the ultrastructural and immunophenotypic features of the anterior corneal stroma of a patient who underwent superficial anterior lamellar keratoplasty (SALK) surgery to remove corneal opacities related to clinically significant and steroid-unresponsive, long-lasting SEIs after adenoviral EKC.

View Article and Find Full Text PDF

Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.

Differentiation

January 2025

Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA. Electronic address:

The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!