Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is expressed in developing and adult skeletal muscle and negatively regulates skeletal muscle growth. Recently, myostatin has been found to be expressed in tendons and increases tendon fibroblast proliferation and the expression of tenocyte markers. C2C12 is a mouse myoblast cell line, which has the ability to transdifferentiate into osteoblast and adipocyte lineages. We hypothesized that myostatin is capable of inducing tenogenic differentiation of C2C12 cells. We found that the expression of scleraxis, a tendon progenitor cell marker, is much higher in C2C12 than in the multipotent mouse mesenchymal fibroblast cell line C3H10T1/2. In comparison with other growth factors, myostatin significantly up-regulated the expression of the tenogenic marker in C2C12 cells under serum-free culture conditions. Immunohistochemistry showed that myostatin inhibited myotube formation and promoted the formation of spindle-shaped cells expressing tenomodulin. We examined signaling pathways essential for tenogenic differentiation to clarify the mechanism of myostatin-induced differentiation of C2C12 into tenocytes. The expression of tenomodulin was significantly suppressed by treatment with the ALK inhibitor SB341542, in contrast to p38MAPK (SB203580) and MEK1 (PD98059) inhibitors. RNAi silencing of Smad3 significantly suppressed myostatin-induced tenomodulin expression. These results indicate that myostatin has a potential role in the induction of tenogenic differentiation of C2C12 cells, which have tendon progenitor cell characteristics, through activation of Smad3-mediated signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377394 | PMC |
http://dx.doi.org/10.1002/2211-5463.12200 | DOI Listing |
Bioeng Transl Med
January 2025
Translational NanoMedicine Laboratory, Department of Medicine, Surgery and Dentistry University of Salerno Baronissi SA Italy.
The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cells and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Cell Rep
December 2024
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:
Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.
View Article and Find Full Text PDFStem Cells Transl Med
November 2024
Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, People's Republic of China.
Background: In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries.
Methods: Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!