Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Light and brassinosteroid (BR) are master environmental stimulus and endogenous cue for plant growth and development respectively. Great progress has been made in elucidating the molecular mechanisms on the cross-talk between light and BR. However, little is known about how BZR1, the pivotal integration node, is regulated by light and dark. Here, we demonstrated that an intact BR signaling pathway is essential for dark-induced hypocotyl elongation. Consequent expression assay showed that light-dark switch affected BZR1 phosphorylation and accumulation. Moreover, blocking the 26S proteasome pathway promoted the accumulation of both phosphorylated and dephosphorylated BZR1 proteins. Restriction of new protein biosynthesis had multiple effects on BZR1 phosphorylation status and stability, relying on the availability of light and the 26S proteasome pathways. Furthermore, sugar treatment strikingly enhanced the accumulation of total BZR1 under either light or dark conditions, likely by repressing transcript abundance of , a gene encoding an E3 ligase for BZR1. Finally, light-regulated phosphorylation change of BZR1 requires the existence of endogenous BR as well as functional BIN2 and protein phosphatase 2A (PP2A). Taken together, our results depicted a light-involved complex regulation network of BZR1 stability and phosphorylation status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408700 | PMC |
http://dx.doi.org/10.1042/BSR20170069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!