PIF4-controlled auxin pathway contributes to hybrid vigor in .

Proc Natl Acad Sci U S A

Faculty of Science, University of Technology, Sydney, NSW 2007, Australia;

Published: April 2017

AI Article Synopsis

  • F1 hybrids are high-yielding and uniform, but the F2 generation loses these advantages and shows variability in traits.
  • Researchers created pure breeding hybrid mimic lines that are mostly homozygous, consisting of specific chromosomal segments from parent plants, which may harbor key genes for hybrid vigor.
  • Increased expression of the transcription factor PIF4 and auxin-related genes in F1 hybrids and hybrid mimics may enhance leaf growth and early germination, suggesting these traits are indicators of hybrid vigor.

Article Abstract

F1 hybrids in and crop species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding hybrid mimic lines by recurrent selection and also selected a pure breeding small phenotype line. The hybrid mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and 8 from L were present in all of the hybrid mimic lines, whereas in the F6 small phenotype line, the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in hybrid mimics and F1 plants but not in the small phenotype line. These genes may be critical for the generation of hybrid vigor. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene and the auxin signaling gene A number of auxin responsive genes promoting leaf growth were up-regulated in the F1 hybrids and hybrid mimics, suggesting that increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The hybrid mimic seeds had earlier germination as did the seeds of the F1 hybrids, indicating cosegregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410812PMC
http://dx.doi.org/10.1073/pnas.1703179114DOI Listing

Publication Analysis

Top Keywords

hybrid vigor
16
hybrid mimic
12
small phenotype
12
hybrid mimics
12
hybrid
11
pure breeding
8
mimic lines
8
phenotype hybrid
8
contribute hybrid
8
auxin biosynthesis
8

Similar Publications

Genetic analysis and heterosis breeding of seed yield and yieldattributing traits in Indian mustard (Brassica juncea (L.) Czern & Coss.).

Sci Rep

January 2025

Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, CoochBehar, West Bengal, India.

This study aimed to assess the genetic basis and combining ability of 10 morphological traits in Indian mustard. The experiment involved eight parent lines and 28 crosses derived from a half-diallel mating design. Combining ability analysis is vital for identifying parents and hybrids with favorable genetic effects to enhance breeding efficiency.

View Article and Find Full Text PDF

In this first QTL mapping study of embryo size in barley, novel and stable QTL were identified and candidate genes underlying a significant locus independent of kernel size were identified based on orthologous analysis and comparison of the whole-genome assemblies for both parental genotypes of the mapping population. Embryo, also known as germ, in cereal grains plays a crucial role in plant development. The embryo accounts for only a small portion of grain weight but it is rich in nutrients.

View Article and Find Full Text PDF

Plant breeding needs to embrace genetic innovations to ensure stability in crop yields under fluctuating climatic conditions. Development of commercial hybrid varieties has proven to be a sustainable and economical alternative to deliver superior yield, quality and resistance with uniformity in a number of food crops. Cytoplasmic male sterility (CMS), a maternally inherited inability to produce functional pollen, facilitates a three-line system for efficient hybrid seed production strategies in crops.

View Article and Find Full Text PDF

Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp.

Curr Biol

January 2025

University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:

Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.

View Article and Find Full Text PDF

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!