Folates are B-vitamins that play an important role in brain function. Dietary and genetic deficiencies in folate metabolism result in elevated levels of homocysteine which have been linked to increased risk of developing a stroke. Reducing levels of homocysteine before or after a stroke through B-vitamin supplementation has been a focus of many clinical studies, however, the results remain inconsistent. Animal model systems provide a powerful mechanism to study and understand functional impact and mechanisms through which supplementation affects stroke recovery. The aim of this study was to understand the role of B-vitamins in stroke pathology using in vivo and in vitro mouse models. The first objective assessed the impact of folate deficiency prior to ischemic damage followed by B-vitamins and choline supplementation. Ischemic damage targeted the sensorimotor cortex. C57Bl/6 wild-type mice were maintained on a folic acid deficient diet for 4weeks prior to ischemic damage to increased levels of plasma homocysteine, a risk factor for stroke. Post-operatively mice were placed on a B-vitamin and choline supplemented diet for a period of four weeks, after which motor function was assessed in mice using the rotarod, ladder beam and forepaw asymmetry tasks. The second objective was to determine how a genetic deficiency in methylenetetrahydrofolate reductase (MTHFR), an enzyme involved in folate metabolism, increases vulnerability to stroke. Primary cortical neurons were isolated from Mthfr, Mthfr and Mthfr embryos and were exposed to in vitro models of stroke which include hypoxia or oxygen glucose deprivation. Cell viability was measured 24-h after exposure stroke like conditions in vitro. In supplemented diet mice, we report improved motor function after ischemic damage compared to mice fed a control diet after ischemic damage. Within the perilesional cortex, we show enhanced proliferation, neuroplasticity and anti-oxidant activity in mice fed the supplemented diet. A genetic MTHFR deficiency resulted in neurodegeneration after exposure to in vitro models of stroke, by activating apoptosis promoting p53-dependent mechanisms. These results suggest that one-carbon metabolism plays a significant role in recovery after stroke and MTHFR deficiency contributes to poor recovery from stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2017.04.001 | DOI Listing |
Neurochem Int
December 2024
Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, 150001, China. Electronic address:
Cerebral ischemia-reperfusion injury (CIRI) is a common and serious complication of reperfusion therapy in patients with ischemic stroke (IS). The regulation of microglia-mediated neuroinflammation to control CIRI has garnered considerable attention. The balance of iron metabolism is key to maintaining the physiological functions of microglia.
View Article and Find Full Text PDFAnn Vasc Surg
December 2024
Department of Cardiovascular Surgery, Oita University Faculty of Medicine, Oita, Japan.
Background: Acute ischemia in the hind extremities is a dangerous disease that causes irreversible damage. Revascularization procedures are important to prevent muscle damage, but these treatments may induce additional damage, also known as ischemia-reperfusion injury. The role of free radicals as pivotal mediators of ischemia-reperfusion injury remains a prominent hypothesis.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:
Ischemia and hypoxia caused by vascular injury intensify nerve damage. Skin precursor-derived Schwann cells have demonstrated an accelerated in vivo pre-vascularization of tissue-engineered nerves. Furthermore, extracellular vesicles from skin precursor-derived Schwann cells (SKP-SC-EVs) show the potential in aiding peripheral nerve regeneration.
View Article and Find Full Text PDFInt J Cardiol
December 2024
Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China. Electronic address:
Background: Previous studies report that Hashimoto's thyroiditis (HT) may be associated with non-ischemic cardiomyopathy (NICM); However, the causal relationship remains to be elucidated. Here, we aimed to investigate the causal relationship between HT and NICM through Mendelian randomization (MR) and explore the potential mediating role of inflammatory cytokines within this association.
Methods: The bidirectional two-sample MR, multivariable MR and mediation MR analyses were conducted based on genome-wide association study summary datasets, and MR results were further supported by multiple sensitivity analysis methods.
Phytomedicine
December 2024
The First Hospital of Hunan University of Chinese Medicine, Hunan, 410007 China. Electronic address:
Unlabelled: Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!