The operation of attention on visible objects involves a sequence of cognitive processes. The current study firstly aimed to elucidate the effects of practice on neural mechanisms underlying attentional processes as measured with both behavioural and electrophysiological measures. Secondly, it aimed to identify any pattern in the relationship between Event-Related Potential (ERP) components which play a role in the operation of attention in vision. Twenty-seven participants took part in two recording sessions one week apart, performing an experimental paradigm which combined a match-to-sample task with a memory-guided efficient visual-search task within one trial sequence. Overall, practice decreased behavioural response times, increased accuracy, and modulated several ERP components that represent cognitive and neural processing stages. This neuromodulation through practice was also associated with an enhanced link between behavioural measures and ERP components and with an enhanced cortico-cortical interaction of functionally interconnected ERP components. Principal component analysis (PCA) of the ERP amplitude data revealed three components, having different rostro-caudal topographic representations. The first component included both the centro-parietal and parieto-occipital mismatch triggered negativity - involved in integration of visual representations of the target with current task-relevant representations stored in visual working memory - loaded with second negative posterior-bilateral (N2pb) component, involved in categorising specific pop-out target features. The second component comprised the amplitude of bilateral anterior P2 - related to detection of a specific pop-out feature - loaded with bilateral anterior N2, related to detection of conflicting features, and fronto-central mismatch triggered negativity. The third component included the parieto-occipital N1 - related to early neural responses to the stimulus array - which loaded with the second negative posterior-contralateral (N2pc) component, mediating the process of orienting and focusing covert attention on peripheral target features. We discussed these three components as representing different neurocognitive systems modulated with practice within which the input selection process operates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopsycho.2017.04.004 | DOI Listing |
Sci Rep
January 2025
Huanggang Normal University, Huanggang, 438000, Hubei, ROC.
Perception of motion-in-depth is essential to guide and modify the hitting action in interceptive-dominated sports (e.g., tennis).
View Article and Find Full Text PDFDev Cogn Neurosci
December 2024
School of Psychological Science, University of Bristol, UK.
It is well established that faces evoke a distinct neural response in the adult and infant brain. Past research has focused on how the infant face-sensitive ERP components (N290, P400, Nc) reflect different aspects of face processing, however there is still a lack of understanding of how these components reflect face familiarity and how they change over time. Further, there are only a few studies on whether these neural responses correlate with other aspects of development, such as infant temperament.
View Article and Find Full Text PDFNavigating visually complex environments requires focusing on relevant information while filtering out (salient) distractions. The signal suppression hypothesis posits that salient stimuli generate an automatic saliency signal that captures attention unless overridden by learned suppression mechanisms. In support of this, ERP studies have demonstrated that salient stimuli that do not capture attention elicit a distractor positivity (PD), a putative neural index of suppression.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia, but differentiating between them can be challenging due to overlapping symptoms [1]. Quantitative electroencephalography (EEG) is emerging as a promising tool to identify potential biosignatures that can distinguish AD and FTD [2]-[5]. Prior EEG research has revealed slowing of the posterior dominant rhythm (PDR) in both AD and FTD patients compared to controls, reflecting underlying neurodegeneration.
View Article and Find Full Text PDFCleft Palate Craniofac J
January 2025
Department of Plastic Surgery, Children's Health Ireland at Crumlin, Dublin, Ireland.
Objective: This study aims to map the existing sources of evidence on perioperative care and recovery strategies for primary cleft palate repair, to identify elements that should be included in an enhanced recovery pathway (ERP), and to identify gaps in current knowledge.
Design: Scoping review.
Setting: ERPs are evidence-based, patient-centered, multimodal, perioperative care pathways designed to reduce surgical stress and improve postoperative outcomes and are increasingly being reported in the cleft lip and palate literature.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!