Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms.

Sci Total Environ

Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. Electronic address:

Published: October 2017

AI Article Synopsis

  • The study evaluates the biocidal activity of three metal organic frameworks (MOFs) containing Co, Zn, and Ag against a green alga and two cyanobacteria involved in biofouling.
  • After 24 hours of exposure, all three MOFs inhibited chlorophyll a concentration by over 50% in the cyanobacteria, while the green alga was highly sensitive to Ag-TAZ but more resistant to the other MOFs.
  • The research indicates that the effectiveness of these MOFs depends on the bioavailability of the metal ions released, which is crucial for understanding how to optimize their use as biocidal materials against photosynthetic organisms.

Article Abstract

In the present study, the biocidal activity of three different metal organic frameworks (MOFs) based on Co (Co-SIM1), Zn (Zn-SIM1) and Ag (Ag-TAZ) has been evaluated towards one green alga and two cyanobacteria. These organisms are present in fresh- and seawater and take part in the early stages of the biofouling process. The biocidal activity of these materials was evaluated by measuring chlorophyll a concentration and by inhibition zone testing. After 24h of exposure the three different MOFs caused >50% of chlorophyll a concentration inhibition towards both cyanobacteria, however, although the green alga presented a great sensitivity for Ag-TAZ (reaching 90% of chlorophyll a concentration inhibition), it was much more resistant to the rest of MOFs. Bioavailability of these metals was studied using ICP-MS, the chemical speciation program Visual MINTEQ, and a heavy metal bioreporter bioanalytical tool. We have elucidated that the biocidal activity presented by these MOFs was due to the dissolved metals released from them and more exactly, it depended on the bioavailability presented by these metal ions, which was closely related with the free ion concentration. This article highlights the potential use of different MOFs as biocidal material towards photosynthetic organisms and reveals important differences in the sensitivity between these organisms that should be taken into account in order to increase the biocidal spectrum of these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.03.250DOI Listing

Publication Analysis

Top Keywords

biocidal activity
12
chlorophyll concentration
12
concentration inhibition
12
photosynthetic organisms
8
green alga
8
biocidal
6
mofs
5
ag-mofs evaluation
4
evaluation biocidal
4
biocidal materials
4

Similar Publications

Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface.

View Article and Find Full Text PDF

Exploring the potential of hydrolytic enzymes combined with antibacterial agents to disrupt pathogenic biofilms and disinfect released cells.

Biofouling

January 2025

Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, Hermosillo, Sonora, México.

Biofilms are bacterial communities encapsulated in a self-produced extracellular polymeric matrix comprising carbohydrates, proteins, lipids, and DNA. This matrix provides structural integrity while significantly enhancing bacterial antibiotic resistance, presenting substantial disinfection challenges. The persistence of biofilm-associated infections and foodborne outbreaks underscores the need for more effective disinfection strategies.

View Article and Find Full Text PDF

This study aims to evaluate the rice husk (EE-R) and lemongrass (EE-L) derived-eco-enzymes (EE) as alternatives to chemical-based disinfectants. The EE-R and EE-L's antimicrobial activity were tested against Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus using a broth microdilution method. The antibiofilm activities of EE were determined using crystal violet staining.

View Article and Find Full Text PDF

Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage.

View Article and Find Full Text PDF

Oxidative stress, associated with excessive production of reactive oxygen and nitrogen species (ROS, RNS), contributes to the development and progression of many ailments, such as aging, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, diabetes, cancer, preeclampsia or multiple sclerosis. While phenols and polyphenols are the most studied antioxidants structurally similar compounds such as anilines or thiophenols are sporadically analyzed despite their radical scavenging potential. This work assesses the impact of structural features of phenols and thiophenols on their antioxidant activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!