Purpose: The presence of fibrillin-rich elastic fibers in the cornea has been overlooked in recent years. The aim of the current study was to elucidate their functional role using a mouse model for Marfan syndrome, defective in fibrillin-1, the major structural component of the microfibril bundles that constitute most of the elastic fibers.
Methods: Mouse corneas were obtained from animals with a heterozygous fibrillin-1 mutation (Fbn1+/-) and compared to wild type controls. Corneal thickness and radius of curvature were calculated using optical coherence tomography microscopy. Elastic microfibril bundles were quantified and visualized in three-dimensions using serial block face scanning electron microscopy. Transmission electron microscopy was used to analyze stromal ultrastructure and proteoglycan distribution. Center-to-center average interfibrillar spacing was determined using x-ray scattering.
Results: Fbn1+/- corneas were significantly thinner than wild types and displayed a higher radius of curvature. In the Fbn1+/- corneas, elastic microfibril bundles were significantly reduced in density and disorganized compared to wild-type controls, in addition to containing a higher average center-to-center collagen interfibrillar spacing in the center of the cornea. No other differences were detected in stromal ultrastructure or proteoglycan distribution between the two groups. Proteoglycan side chains appeared to colocalize with the microfibril bundles.
Conclusions: Elastic fibers have an important, multifunctional role in the cornea as highlighted by the differences observed between Fbn1+/- and wild type animals. We contend that the presence of normal quantities of structurally organized elastic fibers are required to maintain the correct geometry of the cornea, which is disrupted in Marfan syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695733 | PMC |
http://dx.doi.org/10.1167/iovs.16-21358 | DOI Listing |
Int J Mol Sci
December 2024
Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany.
Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt.
Polyetheretherketone (PEEK) has emerged as a revolutionary material in modern dentistry because of its unique combination of mechanical strength, biocompatibility, and versatility. This literature review examines the current applications and future potential of PEEK in various dental disciplines. PEEK's favorable properties, including its low specific weight, high strength-to-weight ratio, and ability to be easily machined, have led to its adoption in prosthetics, implantology, and dental esthetic restorations.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milan, Italy; Local Unit Politecnico di Milano, Milan, Italy. Electronic address:
Microtia, along with trauma, represents one of the main causes of external ear malformation. Different clinical techniques were developed for the reconstruction of the auricle, but they all have some drawbacks. This work is focused on the development of an innovative 3D porous scaffold, printed by Fused Deposition Modelling (FDM) and based on laser-scanned images of the healthy contralateral ear of the patient.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!