Dysfunction of DNase I-like 2 (DNase 1L2) has been assumed to play a role in the etiology of parakeratosis through incomplete degradation of DNA in the epidermis. However, the pathogenetic background factor for such pathophysiologic conditions remains unknown. In this context, non-synonymous single-nucleotide polymorphisms (SNPs) in DNASE1L2 that would potentially result in loss of in vivo DNase 1L2 activity might serve as a genetic risk factor for such pathophysiologic conditions. Our aim was to effectively survey the non-synonymous SNPs of DNASE1L2 that would produce a loss-of-function variant of the enzyme together with a genetic distribution in the various populations. Here, the effects of all of the SNPs predicted by PolyPhen-2 analysis to be "probably damaging" (score = 1.000), and derived from frameshift/nonsense mutations, on the activity of DNase 1L2 were examined using the corresponding DNase 1L2 variants expressed in COS-7 cells. Genotyping of these SNPs was also performed in three ethnic groups including 14 different populations. Among the 28 SNPs examined, the minor allele of 23 SNPs was defined as a loss-of-function variant resulting in loss of DNase 1L2 function, indicating that Polyphen-2 analysis could be effective for surveys of at least non-synonymous SNPs resulting in loss of function. On the other hand, these minor alleles were not distributed worldwide, thereby avoiding any marked reduction of the enzyme activity in human populations. Furthermore, all of the 19 SNPs originating from frameshift/ nonsense mutations found in DNASE1L2 resulted in loss of function of the enzyme. Thus, the present findings suggest that each of the minor alleles for these SNPs may serve as one of genetic risk factors for parakeratotic skin diseases such as psoriasis, even though they lack a worldwide genetic distribution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386265 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175083 | PLOS |
PLoS One
August 2017
Department of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan.
Dysfunction of DNase I-like 2 (DNase 1L2) has been assumed to play a role in the etiology of parakeratosis through incomplete degradation of DNA in the epidermis. However, the pathogenetic background factor for such pathophysiologic conditions remains unknown. In this context, non-synonymous single-nucleotide polymorphisms (SNPs) in DNASE1L2 that would potentially result in loss of in vivo DNase 1L2 activity might serve as a genetic risk factor for such pathophysiologic conditions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2017
Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India; Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai 623 806, Tamilnadu, India. Electronic address:
New Schiff base complexes [Cu(L)Cl] (1), [Ni(L)Cl] (2), [Zn(L)Cl] (3), and [Fe(L)HOCl] (4) {L=(4E)-3-(2-hydroxybenzylidene)-4-(2-hydroxyphenylimino)pentan-2-one, L=2,2'-(1E,1'E)-(3-(2-hydroxybenzylidene)-pentane-2,4-diylidene)bis(azan-1-yl-1 idene)diphenol} have been synthesized and characterized by elemental analysis, UV-Vis, IR, FAB-mass, EPR, spectral studies and electrochemical studies, the ligands L &L were characterized by H and C NMR spectra. Complex 1 show a visible spectral d-d band near 600nm and display cyclic voltammetric quasireversible response for the Cu(II)/Cu(I) couple vs Ag/AgCl in DMSO. The EPR spectrum of 1 show g>g suggesting a square planar geometry around copper with d as the ground state.
View Article and Find Full Text PDFCell Death Differ
December 2015
Immunobiology and Dermatology, UCL Institute of Child Health, London, UK.
Nuclear degradation is a key stage in keratinocyte terminal differentiation and the formation of the cornified envelope that comprises the majority of epidermal barrier function. Parakeratosis, the retention of nuclear material in the cornified layer of the epidermis, is a common histological observation in many skin diseases, notably in atopic dermatitis and psoriasis. Keratinocyte nuclear degradation is not well characterised, and it is unclear whether the retained nuclei contribute to the altered epidermal differentiation seen in eczema and psoriasis.
View Article and Find Full Text PDFGene
April 2015
Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
In the present study, we evaluated all of the 35 non-synonymous SNPs in the gene encoding DNase I-like 2 (DNase 1L2), implicated in terminal differentiation of keratinocytes, to seek a functional SNP that would potentially affect the levels of in vivo DNase 1L2 activity. Based on a compiled expression analysis of the amino acid-substituted DNase 1L2 corresponding to each of the 35 non-synonymous SNPs in the gene, these 35 SNPs were grouped into 4 classes according to the alteration of catalytic activity caused by the corresponding amino acid substitution in the DNase 1L2 protein; we were able to identify 12 non-synonymous SNPs as functional SNPs abolishing or substantially reducing the activity. Almost all of the amino acid residues corresponding to the SNPs abolishing the activity were completely or highly conserved in not only the DNase I family, but also animal DNase 1L2.
View Article and Find Full Text PDFElectrophoresis
February 2013
Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan.
Several non-synonymous SNPs in the human deoxyribonuclease I-like 2 (DNase 1L2) gene responsible for DNA degradation during terminal differentiation of epidermal keratinocytes have been identified. However, only limited population data are available, and furthermore the effect of these SNPs on the DNase 1L2 activity remains unknown. Genotyping of all of the 17 SNPs was performed using the PCR-RFLP method in three ethnic groups including 14 different populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!