Submicrometer aggregates are frequently present at low levels in antibody-based therapeutics. Although intuition suggests that the fraction of the aggregate or the size of the aggregate present might correlate with deleterious clinical properties or formulation difficulties, it has been challenging to demonstrate which aggregate states, if any, trigger specific biological effects. One source of uncertainty about the putative linkage between aggregation and safety or efficacy lies in the likelihood that noncovalent aggregation differs in ideal buffers versus in serum and biological tissues; self-association or association with other proteins may vary widely with environment. Therefore, methods for monitoring aggregation and aggregate behavior in biologically relevant matrices could provide a tool for better predicting aggregate-dependent clinical outcomes and provide a basis for antibody engineering prior to clinical studies. Here, we generate models for soluble aggregates of THIOMABs and a bispecific antibody (bsAb) of defined size and exploit fluorescence correlation spectroscopy to monitor their diffusion properties in serum and viscosity-matched buffers. The monomers, dimers, and trimers of both THIOMABs and a bsAb reveal a modest increase in diffusion time in serum greater than expected for an increase in viscosity alone. A mixture of larger aggregates containing mostly bsAb pentamers exhibits a marked increase in diffusion time in serum and much greater intrasample variability, consistent with significant aggregation or interactions with serum components. The results indicate that small aggregates of several IgG platforms are not likely to aggregate with serum components, but nanometer-scale aggregates larger than trimers can interact with the serum in an Ab-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715667 | PMC |
http://dx.doi.org/10.1021/acs.biochem.6b01097 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea.
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to inflammatory and prothrombotic factors released from blood and vessel cells following infection. The existing literature does not provide clear-cut answers, as the results determining platelet status vary according to methodology.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, China.
To investigate the water damage at the interface between emulsified asphalt and aggregate under the action of external water infiltration, firstly, cetyltrimethylammonium bromide was used as an emulsifier to prepare emulsified asphalt in the laboratory, and its basic properties were tested. Then, based on molecular dynamics, an emulsified asphalt-aggregate interface model with different water contents was constructed to calculate the adhesion work of the emulsified asphalt-aggregate interface. The results show that the simulated values of emulsified asphalt density, cohesive energy density, and solubility are in good agreement with the experimental values.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!