Ascorbic acid (AsA), known as vitamin C, is an essential nutrient for humans and mainly absorbed from food. Tea plant (Camellia sinensis (L.) O. Kuntze) leaves can be a dietary source of AsA for humans. However, experimental evidence on the biosynthesis, recycling pathway and distribution of AsA during leaf development in tea plants is unclear. To gain insight into the mechanism and distribution of AsA in the tea plant leaf, we identified 18 related genes involved in AsA biosynthesis and recycling pathway based on the transcriptome database of tea plants. Tea plant leaves were used as samples at different developmental stages. AsA contens in tea plant leaves at three developmental stages were measured by reversed-phase high-performance liquid chromatography (RP-HPLC). The correlations between expression levels of these genes and AsA contents during the development of tea plant leaves were discussed. Results indicated that the l-galactose pathway might be the primary pathway of AsA biosynthesis in tea plant leaves. CsMDHAR and CsGGP might play a regulatory role in AsA accumulation in the leaves of three cultivars of tea plants. These findings may provide a further glimpse to improve the AsA accumulation in tea plants and the commercial quality of tea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385563 | PMC |
http://dx.doi.org/10.1038/srep46212 | DOI Listing |
Plant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
Background/objectives: Dartmoor Estate Tea plantation in Devon, UK, is renowned for its unique microclimate and varied soil conditions, which contribute to the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf samples from various garden locations was explored within the plantation.
Methods: Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).
Hortic Res
January 2025
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou 310008, China.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have emerged as key regulators of herbivory perception and subsequent defense initiation. While their functions in grass plants have been gradually elucidated, the roles of herbivory-related LRR-RLKs in woody plants remain largely unknown. In this study, we mined the genomic and transcriptomic data of tea plants () and identified a total of 307 CsLRR-RLK members.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.
Bud blight caused by is a serious disease affecting tea plants and causing severe damage to production output and quality. Phages play an important role in controlling the development of bacterial diseases in plants. Previous studies have shown that the tolerance of phage-treated tea plants to bud blight was notably greater compared with that of the control group.
View Article and Find Full Text PDFFood Res Int
February 2025
Tea Research Institute, China Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Hangzhou 310008, China. Electronic address:
Drying is the step that is to be used to adjust and control the formation of flavour and quality in black tea processing. In the present work, the comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) and gas chromatography olfactometry with mass (GC-O-MS) were used to determine the dynamic change of the volatile compounds in black tea during drying at 90, 120, 150 °C for 1 h. Results showed that the ratio of esters and aldehydes largely declined when temperature was elevated from 90 °C to 150 °C, while the ratio of heterocycles was increased to 22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!