Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: After large-scale disasters, victim identification frequently presents a challenge and a priority for responders attempting to reunite families and ensure proper identification of deceased persons. The purpose of this investigation was to determine whether currently commercially available facial recognition software can successfully identify disaster victims with facial injuries.
Methods: Photos of 106 people were taken before and after application of moulage designed to simulate traumatic facial injuries. These photos as well as photos from volunteers' personal photo collections were analyzed by using facial recognition software to determine whether this technology could accurately identify a person with facial injuries.
Results: The study results suggest that a responder could expect to get a correct match between submitted photos and photos of injured patients between 39% and 45% of the time and a much higher percentage of correct returns if submitted photos were of optimal quality with percentages correct exceeding 90% in most situations.
Conclusions: The present results suggest that the use of this software would provide significant benefit to responders. Although a correct result was returned only 40% of the time, this would still likely represent a benefit for a responder trying to identify hundreds or thousands of victims. (Disaster Med Public Health Preparedness. 2017;11:568-572).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/dmp.2016.207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!