Panax ginseng berry extract possess remarkable pharmacological effects on skin treatment such as anti-aging, antioxidant, promotor of collagen synthesis and alleviation against atopic dermatitis. In recent years, gold nanoparticles have gained much attention due to their extensive range of applications in particular in the field of drug delivery as a result of their biological compatibility and low toxicity. In a previous study, we designed and developed biocompatible gold and silver nanoparticles based on phytochemical profile and pharmacological efficacy of P. ginseng berry extract, we were able to reduce gold ions to nanoparticles through the process of green synthesis. However, its potential as a cosmetic ingredient is still unexplored. The aim of the present study is to investigate the moisture retention, in-vitro scavenging and whitening properties of gold nanoparticles synthesized from P. ginseng berry in cosmetic applications. Our findings confirm that P. ginseng berry mediated gold nanoparticles exhibited moisture retention capacity. In addition, MTT assay results confirmed that P. ginseng berry mediated gold nanoparticles are non-toxic to human dermal fibroblast and murine melanoma skin cells, possess scavenging activity, protect and provide alleviation against injured caused by HO-induced damage. In addition, P. ginseng berry mediated gold nanoparticles, significantly reduced melanin content and suppress tyrosinase activity in α-MSH-stimulated B16BL6 cells. We conclude that P. ginseng berry mediated gold nanoparticles are biocompatible and environmental affable materials and can be a potential novel cosmetic ingredient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2017.1307216 | DOI Listing |
Int J Food Microbiol
January 2025
College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China. Electronic address:
This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.
Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.
J Exp Bot
January 2025
College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
The effects of puffing on the ginsenoside composition as well as antioxidant and anti-inflammatory activities of ginseng berry were investigated to increase the utilization of ginseng berry. There was no significant difference in extraction yield between the control and puffed samples at all moisture contents and pressure conditions ( < 0.05).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2024
Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.
To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!