This is the first country-wide surveillance of bat-borne viruses in Kenya spanning from 2012-2015 covering sites perceived to have medium to high level bat-human interaction. The objective of this surveillance study was to apply a non-invasive approach using fresh feces to detect viruses circulating within the diverse species of Kenyan bats. We screened for both DNA and RNA viruses; specifically, astroviruses (AstVs), adenoviruses (ADVs), caliciviruses (CalVs), coronaviruses (CoVs), flaviviruses, filoviruses, paramyxoviruses (PMVs), polyomaviruses (PYVs) and rotaviruses. We used family-specific primers, amplicon sequencing and further characterization by phylogenetic analysis. Except for filoviruses, eight virus families were detected with varying distributions and positive rates across the five regions (former provinces) studied. AstVs (12.83%), CoVs (3.97%), PMV (2.4%), ADV (2.26%), PYV (1.65%), CalVs (0.29%), rotavirus (0.19%) and flavivirus (0.19%). Novel CalVs were detected in Rousettus aegyptiacus and Mops condylurus while novel Rotavirus-A-related viruses were detected in Taphozous bats and R. aegyptiacus. The two Rotavirus A (RVA) strains detected were highly related to human strains with VP6 genotypes I2 and I16. Genotype I16 has previously been assigned to human RVA-strain B10 from Kenya only, which raises public health concern, particularly considering increased human-bat interaction. Additionally, 229E-like bat CoVs were detected in samples originating from Hipposideros bats roosting in sites with high human activity. Our findings confirm the presence of diverse viruses in Kenyan bats while providing extended knowledge on bat virus distribution. The detection of viruses highly related to human strains and hence of public health concern, underscores the importance of continuous surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702250 | PMC |
http://dx.doi.org/10.1007/s12250-016-3930-2 | DOI Listing |
Ecohealth
March 2024
Department of Biological Sciences, University of Arkansas, Science and Engineering Building, 850 W Dickson St, Fayetteville, AR, 72701, USA.
Ecological information on wildlife reservoirs is fundamental for research targeting prevention of zoonotic infectious disease, yet basic information is lacking for many species in global hotspots of disease emergence. We provide the first estimates of synchronicity, magnitude, and timing of seasonal birthing in Mops condylurus, a putative ebolavirus host, and a co-roosting species, Mops pumilus (formerly Chaerephon pumilus). We show that population-level synchronicity of M.
View Article and Find Full Text PDFZookeys
July 2023
Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA Field Museum of Natural History Chicago United States of America.
Bat flies (Diptera: Nycteribiidae and Streblidae) are hematophagous ectoparasites of bats characterized by viviparous pupiparity and generally high host specificity. Nycteribiid bat flies are wingless, morphologically constrained, and are most diverse in the Eastern Hemisphere. Africa hosts approximately 22% of global bat biodiversity and nearly one-third of all African bat species occur in Kenya, one of Africa's most bat-rich countries.
View Article and Find Full Text PDFJ Virol
January 2023
Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
Viruses
December 2022
Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD 20746, USA.
Viruses
January 2022
D.I. Ivanovsky Institute of Virology of N.F. Gamleya National Center for Epidemiology and Microbiology of Ministry of Health of Russian Federation, 18 Gamaleya Street, 123098 Moscow, Russia.
We found and genetically described two novel SARS-like coronaviruses in feces and oral swabs of the greater () and the lesser () horseshoe bats in southern regions of Russia. The viruses, named Khosta-1 and Khosta-2, together with related viruses from Bulgaria and Kenya, form a separate phylogenetic lineage. We found evidence of recombination events in the evolutionary history of Khosta-1, which involved the acquisition of the structural proteins S, E, and M, as well as the nonstructural genes ORF3, ORF6, ORF7a, and ORF7b, from a virus that is related to the Kenyan isolate BtKY72.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!