A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput Screening of Erratic Cell Volume Regulation Using a Hydrogel-based Single-cell Microwell Array. | LitMetric

Here, we report that a single-cell microwell array based on photocrosslinked hydrogel can be used to screen cells exhibiting a defective regulatory volume decrease (RVD) in high-throughput. The RVD is a regulatory function of cells that maintains cell volume homeostasis in a hypotonic medium. Single Madin-Darby canine kidney (MDCK) cells grown in the microwells were loaded with a volume-sensitive fluorescence dye. Changes in the volume of discrete single cells were traced for 20 min in a hypotonic solution using a wide-field fluorescence microscopy. The volume changes of more than 100 single cells were analyzed simultaneously using time-lapse fluorescence micrographs. Cells showing erratic RVD could be easily screened from the image analysis. Nearly 40% of the MDCK single cells exhibited weak, or no, RVD. Since other previously reported methods could not detect as many changes in the volume of discrete singles cells as the method used in this report, we anticipate that our reported method will provide an efficient way of elucidating the RVD mechanisms of cells that have not yet been completely understood.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.33.525DOI Listing

Publication Analysis

Top Keywords

single cells
12
cells
9
cell volume
8
single-cell microwell
8
microwell array
8
changes volume
8
volume discrete
8
volume
6
rvd
5
high-throughput screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!