Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cells dissociated from various tissues of vertebrate embryos preferentially reaggregate with cells from the same tissue when they are mixed together. This tissue-specific recognition process in vertebrates is mainly mediated by a family of cell adhesion molecules because of their specific binding properties. Recent studies have revealed that two families of adhesion molecules, nectins and cadherins, are associated with each other, and these associations provide cells with the differential adhesive affinities required for cellular recognition and complex cellular pattern formations during development. This review provides an overview of recent findings regarding the cooperative functions of nectins and cadherins, as well as a discussion of the molecular basis underlying these functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2017.04.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!