Background Aims: In this study, we demonstrate long-term persistence of human mesenchymal stromal cells (hMSCs) after intracoronary injection in a large animal model of pulmonary hypertension (PH).
Methods: Commercially available placenta-derived hMSCs were used. Experiments were conducted on 14 female Yorkshire swine. Four animals served as controls, and 10 underwent pulmonary vein (PV) banding. After 12 ± 2 weeks, PH and PV dysfunction were confirmed by right heart catheterization and cardiac magnetic resonance imaging. hMSCs were injected in the marginal branch of the right coronary artery. Tissues were harvested 6, 9 or 24 days after infusion.
Results: After 12 ± 2 weeks after PV banding, all subjects had increased mean pulmonary artery pressure (13.6 ± 3.6 versus 30.8 ± 4.5 mm Hg, P < 0.007) and a decrease in right ventricular ejection fraction from 51.7 ± 5.7% versus 30.5 ± 11.3% (P = 0.003). Intracoronary injection of hMSCs was well tolerated. Up to 24 days after hMSC injection, immunohistochemistry revealed extravascular viable human CD105 mononuclear cells in the right ventricle (RV) that were Ki67. This was confirmed by fluorescence in situ hybridization. CD45 porcine inflammatory cells were identified, commonly seen adjacent to areas of healing microscopic infarction that likely dated to the time of the original hMSC injection. Anti-CD31 staining produced strong signals in areas of injected hMSCs. Immunohistochemistry staining for vascular cell adhesion molecule-1 showed upregulation in the clusters, where mononuclear cells were located.
Conclusions: hMSCs injected via intracoronary infusion survived up to 24 days and demonstrated proliferative capacity. hMSCs can persist long term in the RV and are potential cell source for tissue repair in RV dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502690 | PMC |
http://dx.doi.org/10.1016/j.jcyt.2017.03.002 | DOI Listing |
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFStem Cells Int
January 2025
Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.
Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.
View Article and Find Full Text PDFTheranostics
January 2025
Department of biochemistry and molecular biology, College of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
Stem cell transplantation is a promising strategy to establish neural relays in situ for spinal cord injury (SCI) repair. Recent research has reported short-term survival of exogenous cells, irrespective of immunosuppressive drugs (ISD), results in similar function recovery, though the mechanisms remain unclear. This study aims to validate this short-term repair effect and the potential mechanisms in large animals.
View Article and Find Full Text PDFHeliyon
January 2025
Nasal Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.
Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.
Curr Ther Res Clin Exp
November 2024
Laboratorio de Oncología Celular y Molecular. Departamento de Oncología Básico-Clínica. Facultad de Medicina. Universidad de Chile, Santiago, Chile.
Background: Leukotriene B (LTB) plays a crucial role in carcinogenesis by inducing epithelial-mesenchymal transition (EMT), a process associated with tumor progression. The synthesis of LTB is mediated by leukotriene A hydrolase (LTAH), and it binds to the receptors BLT and BLT. Dysregulation in LTB production is linked to the development of various pathologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!