A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation. | LitMetric

Background: Brainshift is still a major issue in neuronavigation. Incorporating intra-operative ultrasound (iUS) with advanced registration algorithms within the surgical workflow is regarded as a promising approach for a better understanding and management of brainshift. This work is intended to (1) provide three-dimensional (3D) ultrasound reconstructions specifically for brain imaging in order to detect brainshift observed intra-operatively, (2) evaluate a novel iterative intra-operative ultrasound-based deformation correction framework, and (3) validate the performance of the proposed image-registration-based deformation estimation in a clinical environment.

Methods: Eight patients with brain tumors undergoing surgical resection are enrolled in this study. For each patient, a 3D freehand iUS system is employed in combination with an intra-operative navigation (iNav) system, and intra-operative ultrasound data are acquired at three timepoints during surgery. On this foundation, we present a novel resolution-preserving 3D ultrasound reconstruction, as well as a framework to detect brainshift through iterative registration of iUS images. To validate the system, the target registration error (TRE) is evaluated for each patient, and both rigid and elastic registration algorithms are analyzed.

Results: The mean TRE based on 3D-iUS improves significantly using the proposed brainshift compensation compared to neuronavigation (iNav) before (2.7 vs. 5.9 mm; [Formula: see text]) and after dural opening (4.2 vs. 6.2 mm, [Formula: see text]), but not after resection (6.7 vs. 7.5 mm; [Formula: see text]). iUS depicts a significant ([Formula: see text]) dynamic spatial brainshift throughout the three timepoints. Accuracy of registration can be improved through rigid and elastic registrations by 29.2 and 33.3%, respectively, after dural opening, and by 5.2 and 0.4%, after resection.

Conclusion: 3D-iUS systems can improve the detection of brainshift and significantly increase the accuracy of the navigation in a real scenario. 3D-iUS can thus be regarded as a robust, reliable, and feasible technology to enhance neuronavigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-017-1578-5DOI Listing

Publication Analysis

Top Keywords

[formula text]
16
intra-operative ultrasound
12
brainshift
8
management brainshift
8
enhance neuronavigation
8
registration algorithms
8
detect brainshift
8
three timepoints
8
rigid elastic
8
dural opening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!