Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely delay-multiply-and-sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, double stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2017.2690959 | DOI Listing |
Biomed Opt Express
December 2024
School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China.
In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction algorithm is widely used due to its ease of implementation and fast execution. However, it is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder the ability to differentiate various structures in the reconstructed images. In this study, we propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor (scMSF) in DAS, which is extended into the spatial frequency domain.
View Article and Find Full Text PDFSensors (Basel)
November 2024
PLA Army Engineering University, Nanjing 210007, China.
In a cell-free massive multiple-input multiple-output (MIMO) system without cells, it is assumed that there are smart jammers and disrupters (SJDs) that attempt to interfere with and eavesdrop on the downlink communications of legitimate users. A secure transmission scheme based on multiple intelligent reflecting surfaces (IRSs) and artificial noise (AN) is proposed. First, an access point (AP) selection strategy based on user location information is designed, which aims to determine the set of APs serving users.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
A reduced-dimension robust Capon beamforming method using Krylov subspace techniques (RDRCB) is a diagonal loading algorithm with low complexity, fast convergence and strong anti-interference ability. The diagonal loading level of RDRCB is known to become invalid if the initial value of the Newton iteration method is incorrect and the Hessel matrix is non-positive definite. To improve the robustness of RDRCB, an improved RDRCB (IRDRCB) was proposed in this study.
View Article and Find Full Text PDFEURASIP J Audio Speech Music Process
November 2024
Department of Electrical and Electronic Engineering, Imperial College London, London, UK.
In the last three decades, the Steered Response Power (SRP) method has been widely used for the task of Sound Source Localization (SSL), due to its satisfactory localization performance on moderately reverberant and noisy scenarios. Many works have analysed and extended the original SRP method to reduce its computational cost, to allow it to locate multiple sources, or to improve its performance in adverse environments. In this work, we review over 200 papers on the SRP method and its variants, with emphasis on the SRP-PHAT method.
View Article and Find Full Text PDFSci Rep
November 2024
College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Xinmofan Road, Nanjing, 210003, Jiangsu, China.
The integration of energy harvesting techniques has the potential to significantly prolong target monitoring in wireless sensor networks (WSNs). However, the stochastic nature of hybrid solar-wind energy arrivals poses a significant challenge to optimizing energy utilization for target coverage. To address this issue, we propose a dynamic and distributed node scheduling algorithm based on Lyapunov optimization for hybrid energy-harvesting WSNs (HEH-WSNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!