Remote ischemic preconditioning (rIPC) is a reliable strategy for prevention of injury to various organs. However the mechanism by which it does so is still unclear. In the present study, serum and EVs isolated from ischemic preconditioned right renal venous perfusates were injected into rats with ischemia-reperfusion-injured kidneys immediately after reperfusion. The animals were killed 24h later. Tubular scores and renal function were tested to evaluate the therapeutic effects. To further explore the underlying mechanism, HK-2 cells derived EVs under hypoxia were also administrated to rats with left kidney IRI. Results showed that transient ischemia of the right kidney induced renal tubular epithelial cells to release functional extracellular vesicles (EVs), which were found to alleviate left kidney ischemic reperfusion injury (IRI) by circulation and the EV-depleted serum lost this property. Further, human kidney cells (HK2) were cultured under hypoxic conditions to generate EVs in vitro. These EVs also showed obvious therapeutic effects for renal IRI. Our results suggested that remote ischemic preconditioning plays a therapeutic role in renal IRI through EVs induced by hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.03.096DOI Listing

Publication Analysis

Top Keywords

remote ischemic
12
ischemic preconditioning
12
extracellular vesicles
8
therapeutic effects
8
left kidney
8
renal iri
8
renal
6
evs
6
ischemic
5
hypoxia-induced extracellular
4

Similar Publications

Objective: Limb ischemia-reperfusion injury caused by repeated tourniquet application usually leads to acute kidney injury, adversely affecting patient prognosis. This study aimed to investigate the renoprotective effect of remote ischemic preconditioning (RIPC) in patients undergoing extremity surgery with repeated tourniquet application.

Methods: 64 patients were enrolled and randomly divided into an RIPC group and a control group, with 32 patients in each.

View Article and Find Full Text PDF

Background: Cholecystectomy often disrupts autonomic balance, impacting recovery. Remote ischemic preconditioning (RIPC) may enhance ANS function and protect organs, but its role in cholecystectomy is unclear.

Methods: In this randomized controlled trial, 80 patients aged 45 to 65 years, scheduled for elective laparoscopic cholecystectomy, were randomly assigned to either the RIPC group or the control group.

View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Article Synopsis
  • Ischaemic heart disease results from coronary atherosclerosis, which is linked to systemic inflammation involving various immune cells released by the spleen.
  • Prolonged inflammation can lead to ischaemic heart failure, while the spleen's interaction with the nervous system can modulate immune responses and protect the heart from damage.
  • Splenectomy, which removes the spleen, increases mortality risk from ischaemic heart disease, highlighting the spleen's crucial role in immune responses and cardiovascular protection.
View Article and Find Full Text PDF

Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.

View Article and Find Full Text PDF

Urinary biomarker studies in cardiothoracic and kidney-sparing surgery have demonstrated renal protection by Remote Ischaemic PreConditioning (RIPC). RIPC intervention generates cycles of ischaemia and reperfusion of the limbs before the actual ischaemia of the target organ (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!