Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity.

Chemosphere

Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

Published: August 2017

Antioxidative and microscopic responses in non-vascular (moss Taxiphyllum barbieri) and vascular (Ceratophyllum demersum) aquatic plants exposed to short-term (24 h) cadmium (Cd) excess (10 and 100 μM) were compared. Ceratophyllum considerably accumulated Cd but less pronounced symptoms of oxidative stress were detected by confocal microscopy (at the level of general ROS, hydrogen peroxide, hydroxyl radical/peroxynitrite and superoxide) that could be related to enhanced activities of antioxidative enzymes (SOD, CAT, APX). Amounts of ascorbic acid and non-protein thiols were higher in Ceratophyllum than in Taxiphyllum and increased with increasing Cd dose, which may help to better regulate circulation of free metal ions in Ceratophyllum mainly. Besides, it was observed that citric acid increased in Ceratophyllum while malic acid in Taxiphyllum in response to Cd which may also contribute to Cd chelation. Our data indicate that Ceratophyllum is a suitable species for Cd bioaccumulation while Taxiphyllum is more sensitive to Cd excess and thus suitable as indicator species. It was also proven that sensitive microscopic techniques allow the visualization of Cd-induced changes in aquatic plants even after short-term exposure when no morphological signs of damage are visible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.04.002DOI Listing

Publication Analysis

Top Keywords

aquatic plants
8
ceratophyllum
6
comparison vascular
4
vascular non-vascular
4
non-vascular aquatic
4
aquatic plant
4
plant indicators
4
indicators cadmium
4
cadmium toxicity
4
toxicity antioxidative
4

Similar Publications

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Proteomic Profile of in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.

Int J Mol Sci

January 2025

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.

Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).

View Article and Find Full Text PDF

Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.

View Article and Find Full Text PDF

sp. nov., a bacterium isolated from the roots of the aquatic plant .

Int J Syst Evol Microbiol

January 2025

Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.

A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.

View Article and Find Full Text PDF

Combined pollution of heavy metals and polycyclic aromatic hydrocarbons in non-ferrous metal smelting wastewater treatment plant: Distribution profiles, removal efficiency, and ecological risks to receiving river.

J Hazard Mater

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Combined pollution status of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) from non-ferrous metal smelting (NFMS) industry is crucial but has not been explored. Herein, the co-distribution of HMs and PAHs in a NFMS wastewater treatment plant and the impacts on the receiving river were investigated. Cu, As, and Ni were found to be the characteristic HMs, while Acenaphthylene was the characteristic PAHs in the NFMS wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!