The structure, particle morphology and luminescent properties of europium (Eu) doped ZnO nanoparticles (NPs) prepared by co-precipitation method are discussed. When excited using a 325nm He-Cd laser, undoped ZnO NPs exhibited weakly the well-known ultraviolet excitonic recombination emission (at ~384nm) and strongly broad band visible emissions associated with defects (at ~600nm). In addition, the ZnO NPs exhibited green emission at ~600nm associated with defects when excited using a monochromatized xenon lamp. Upon Eu doping line emissions attributed to D→F transitions of Eu ions were observed when the materials were excited using a monochromatized xenon lamp. The exchange interaction mechanism is identified as the cause for concentration quenching of the luminescence of Eu doped ZnO NPs in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2017.03.067 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yıldız Technical University, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, İstanbul, Turkey.
The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Key Laboratory of Medical Cell Biology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People's Republic of China.
Introduction: The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation.
Methods: With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!