Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation.

Neurobiol Aging

Center for Mind and Brain, University of California-Davis, Davis, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA, USA; Department of Psychology, University of California-Davis, Davis, CA, USA.

Published: July 2017

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498112PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.018DOI Listing

Publication Analysis

Top Keywords

premutation carriers
16
carriers fxtas
12
volume decrease
12
cerebellum brainstem
8
brainstem volumes
8
cerebellar brainstem
8
controls premutation
8
accelerated volume
8
decrease cerebellum
8
cerebellum brain
8

Similar Publications

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Autism is clinically defined by challenges with social language, including difficulties offering on-topic language in a conversation. Similar differences are also seen in genetically related conditions such as fragile X syndrome (FXS), and even among those carrying autism-related genes who do not have clinical diagnoses (e.g.

View Article and Find Full Text PDF

Genetic study on candidates for oocyte donation.

JBRA Assist Reprod

December 2024

Genetics Unit, Department of Pathology, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.

Objective: There is a rising demand for assisted reproductive medicine, including sperm, oocyte and embryo donation. Besides medical and legal considerations, genetic testing, including carrier screening for multiple autosomal and X-linked recessive disorders plays an essential role in evaluating hereditary risk among donors and therefore exclude them from the donation process.

Methods: A retrospective study was conducted on oocyte donors from a private clinic of assisted reproduction who underwent genetic testing between June 2014 and September 2023.

View Article and Find Full Text PDF

Genetics architecture of spontaneous coronary artery dissection in an Italian cohort.

Front Cardiovasc Med

November 2024

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Spontaneous coronary artery dissection (SCAD) is a relevant non-atherosclerotic cause of acute coronary syndrome with a complex genetic architecture. Recent discoveries have highlighted the potential role of miRNAs and protein-coding genes involved in the processing of small RNAs in the pathogenesis of SCAD. Furthermore, there may be a connection between SCAD and the increased cardiovascular risk observed in fragile X premutation carriers as well as a correlation with pathogenetic variants in genes encoding for collagen and extracellular matrix, which are related to connective tissue disorders (CTDs).

View Article and Find Full Text PDF

Background: Premutation alleles of the FMR1 X-linked gene containing CGG repeat expansions ranging from 55 to 200 are associated with diverse late-onset neurological involvements, including most severe disorder termed Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). It is intriguing that at least one-third of male, and a much lower than predicted from the X-linkage proportion of female carriers are free of this syndrome. This suggests the existence of secondary genetic factors modifying the risk of neurological involvements in these carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!