Unlabelled: Transcranial direct current stimulation (tDCS) combined with a cognitive task can enhance targeted aspects of cognitive functioning in clinical populations. The movement disorder Huntington's disease (HD) is associated with progressive cognitive impairment. Deficits in working memory (WM) can be apparent early in the disease and impact functional capacity. We investigated whether tDCS combined with cognitive training could improve WM in patients with HD, and if baseline clinical or cognitive measures may predict efficacy. Twenty participants with HD completed this crossover trial, undergoing 1.5mA anodal tDCS over left dorsolateral prefrontal cortex and sham stimulation on separate visits. Participants and assessor were blinded to condition order, which was randomised across participants. All participants completed baseline clinical and cognitive assessments. Pre- and post-stimulation tasks included digit reordering, computerised n-back tests and a Stroop task. During 15min of tDCS/sham stimulation, participants practiced 1- and 2-back WM tasks. Participants exhibited an increase in WM span on the digit re-ordering span task from pre- to post-stimulation after tDCS, but not after sham stimulation. Gains in WM were positively related to motor symptom ratings and negatively associated with verbal fluency scores. Patients with more severe motor symptoms showed greatest improvement, suggesting that motor symptom ratings may help identify patients who are most likely to benefit from tDCS.
Conclusions: Dorsolateral prefrontal tDCS appears well tolerated in HD and enhances WM span compared to sham stimulation. Our findings strongly encourage further investigation of the extent to which tDCS combined with cognitive training could enhance everyday function in HD. ClinicalTrials.gov; NCT02216474 Brain stimulation in Movement Disorders; https://clinicaltrials.gov/ct2/show/NCT02216474.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnpbp.2017.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!