Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501187 | PMC |
http://dx.doi.org/10.1016/j.yexcr.2017.03.065 | DOI Listing |
Placenta
November 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland. Electronic address:
Studying iron transfer across trophoblast monolayers is crucial given the significance of iron in maintaining a healthy pregnancy and supporting fetal growth and development. To get insights into the complex mechanism of transplacental iron transfer, we developed a standardized Transwell®-based monolayer model using BeWo (clone b30) cells. Our proposed method is divided into two parts: 1.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, Brazil.
The tambaqui (Colossoma macropomum, G. Cuvier 1818) thrives both in the ion-poor waters of the Amazon and in commercial aquaculture. In both, environmental conditions can be harsh due to low ion levels, occasional high salt challenges (in aquaculture), low pH, extreme PO levels (hypoxia and hyperoxia), high PCO levels (hypercapnia), high ammonia levels (in aquaculture), and high and low temperatures.
View Article and Find Full Text PDFFood Res Int
January 2025
Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Gastrointestinal Physio-Pharmacology (LEFFAG), Federal University of Ceará, Coronel Nunes de Melo Street, 1315 Rodolfo Teófilo, Fortaleza 60416-030, CE, Brazil.
5-Fluorouracil (5-FU) is an antimetabolite widely prescribed in cancer treatments, but its use in highly proliferative tissues can cause significant problems such as mucositis. is a probiotic commonly used for protection against acute diarrhea, gastrointestinal dysbiosis and inflammatory bowel diseases. We investigated the effect of on 5-FU intestinal mucositis in mice.
View Article and Find Full Text PDFBiomolecules
November 2024
Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094 Bydgoszcz, Poland.
Pyrethroids are pesticides used in agriculture, the textile industry, wood processing, and human and animal medicine. Pyrethroids inhibit voltage-sensitive sodium channels (VSSCs) in insects and mammals. It results in the premature opening and/or delayed closing of the channels, causing a prolonged influx of Na ions into the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!