Background: Human endogenous retroviruses (HERVs) have received much attention for their implications in the etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev Immunol 29:351-370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326-335, 2010) conditions. Their repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual loci (De Parseval et al., J Virol 77:10414-10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:16-30, 2005; Seifarth et al., J Virol 79:341-352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006).

Methods: To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions. RESULTS: HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of 1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of expression measured on HERV-V3 is consistent with those reported in the literature.

Conclusions: Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple applications such as enhancers and alternative promoters identification, biomarkers identification as well as the characterization of genes and HERVs/MaLRs modulation caused by viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385096PMC
http://dx.doi.org/10.1186/s12864-017-3669-7DOI Listing

Publication Analysis

Top Keywords

hybridization model
8
herv-v3
5
comprehensive hybridization
4
model allows
4
allows herv
4
herv transcriptome
4
transcriptome profiling
4
profiling high
4
high density
4
density microarray
4

Similar Publications

We present a machine learning (ML) workflow for optimizing electronic band structures using density functional tight binding (DFTB) to replicate the results of costly hybrid functional calculations. The workflow is trained on carbon, silicon, and silicon carbide systems, encompassing bulk, slab, and defect geometries. Our method accurately reproduces hybrid functional results by applying a DFTB-ML scheme to train and predict the scaling parameters of two-center integrals and on-site energies, which is particularly accurate for electronic band structures near the Fermi energy.

View Article and Find Full Text PDF

Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.

View Article and Find Full Text PDF

Background: A new paradigm of hybrid working exists, with most office workers sharing their work between the office and home office environment. Working from home increases time spent or prolonged sitting, which is associated with an increased risk of chronic disease. Interventions to reduce sitting time, specifically designed for both the office and home-office environments, are required to address this growing public health issue.

View Article and Find Full Text PDF

As the world recovered from the coronavirus, the emergence of the monkeypox virus signaled a potential new pandemic, highlighting the need for faster and more efficient diagnostic methods. This study introduces a hybrid architecture for automatic monkeypox diagnosis by leveraging a modified grey wolf optimization model for effective feature selection and weighting. Additionally, the system uses an ensemble of classifiers, incorporating confusion based voting scheme to combine salient data features.

View Article and Find Full Text PDF

This study aims at investigating the dynamics of sexually transmitted infectious disease (STID), which is serious health concern. In so doing, the integer order STID model is progressed in to the time-delayed non-integer order STID model by introducing the Caputo fractional derivatives in place of integer order derivatives and including the delay factors in the susceptible and infectious compartments. Moreover, unique existence of the solution for the underlying model is ensured by establishing some benchmark results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!