A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Brownian dynamics of confined suspensions of active microrollers. | LitMetric

Brownian dynamics of confined suspensions of active microrollers.

J Chem Phys

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA.

Published: April 2017

AI Article Synopsis

  • The text describes the development of new numerical methods for simulating Brownian dynamics in a system of colloidal rollers experiencing a fingering instability near a wall.
  • A stochastic Adams-Bashforth integrator is introduced, which is more accurate than the traditional Euler-Maruyama method while maintaining the same computational cost.
  • The study finds that thermal fluctuations influence the height of colloidal particles above the wall, affecting the timing and characteristics of instability growth associated with active flows.

Article Abstract

We develop efficient numerical methods for performing many-body Brownian dynamics simulations of a recently observed fingering instability in an active suspension of colloidal rollers sedimented above a wall [M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev, and P. Chaikin, Nat. Phys. (2016), preprint arXiv:1609.08673. We present a stochastic Adams-Bashforth integrator for the equations of Brownian dynamics, which has the same cost but is more accurate than the widely used Euler-Maruyama scheme, and use a random finite difference to capture the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. We generate the Brownian increments using a Krylov method and show that for particles confined to remain in the vicinity of a no-slip wall by gravity or active flows, the number of iterations is independent of the number of particles. Our numerical experiments with active rollers show that the thermal fluctuations set the characteristic height of the colloids above the wall, both in the initial condition and the subsequent evolution dominated by active flows. The characteristic height in turn controls the time scale and wavelength for the development of the fingering instability.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4979494DOI Listing

Publication Analysis

Top Keywords

brownian dynamics
12
fingering instability
8
active flows
8
characteristic height
8
active
5
brownian
4
dynamics confined
4
confined suspensions
4
suspensions active
4
active microrollers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: