Masticatory muscle activity evaluation by electromyography in subjects with zygomatic implants.

Med Oral Patol Oral Cir Bucal

Avenida do Café, s/n, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, São Paulo, Brazil,

Published: May 2017

Background: Zygomatic implants are an alternative treatment in the rehabilitation of atrophic maxilla to promote stability in the stomatognathic system. The aim of this study was to compare the electromyographic (EMG) activity of masseter and temporalis muscles in controls and in individuals with complete implant-supported dentures anchored in the zygomatic bone.

Materials And Methods: Fifty-four volunteers of both genders (mean age 52.5 years) were selected and distributed into two groups: Individuals with zygomatic implant (ZIG; n=27) and fully dentate patients (CG; n=27). MyoSystem-BR1 was used to assess masseter and temporalis muscles EMG activity in different mandibular movements: protrusion, clenching, maximal voluntary contraction (MVC) with Parafilm M®, right and left laterality and chewing (peanuts and raisins). Data was processed, normalized (MVC) and analyzed using the SPSS 21.0. Student t-test (P ≤ 0.05) was used for group comparison.

Results: The results were statistically significant (P ≤ 0.05) for protrusion, clenching, right and left laterality and raisin chewing. For the mandibular posture conditions, the ZIG obtained higher EMG activity patterns when compared to CG. For the masticatory performance during chewing of peanuts and raisins, the ZIG showed higher EMG mean values when compared to CG.

Conclusions: The zygomatic implant promoted an active response of the muscle fibers (hyperactivity) during both mandibular posture and chewing conditions, probably due to the absence of periodontal receptors, which play a significant role for preparing a bolus for swallowing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432090PMC
http://dx.doi.org/10.4317/medoral.21659DOI Listing

Publication Analysis

Top Keywords

emg activity
12
zygomatic implants
8
masseter temporalis
8
temporalis muscles
8
zygomatic implant
8
protrusion clenching
8
left laterality
8
chewing peanuts
8
peanuts raisins
8
≤ 005
8

Similar Publications

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).

View Article and Find Full Text PDF

While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).

View Article and Find Full Text PDF

Sensorless model-based tension control for a cable-driven exosuit.

Wearable Technol

December 2024

Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.

Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.

View Article and Find Full Text PDF

Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!