Purpose: The biosimilar development process, comparability for biological agents, and analytic characterization of biosimilars are described.
Summary: Healthcare providers must understand the requirements for biosimilar approval, including the science behind biosimilar development and testing that contributes to the totality of evidence. The foundation of development is to demonstrate that a biosimilar is highly similar to the reference product through analytic characterization. Advances in analytic techniques enable scientists to extensively characterize biological products to identify potential product differences compared with the reference product that may affect the purity, safety, and efficacy of the biosimilar candidate. When developing a biosimilar, the clinical efficacy of the biological product has been proven with trials from the reference biological product; therefore, analytic testing on the molecular structure and biological function becomes the focus. In addition, nonclinical studies in animals are performed, including toxicology and immunogenicity testing. In humans, clinical pharmacology studies are performed to evaluate the safety and the pharmacokinetic and pharmacodynamic properties of the proposed biosimilar. If there is any residual uncertainty about the proposed biological product after this testing, the developer should use guidance from the Food and Drug Administration to determine what additional clinical studies may be needed to adequately address that uncertainty.
Conclusion: Requirements for the approval of a biosimilar product include analytic characterization, which tests for similarity in primary amino acid structure, analysis of higher-order structure using circular dichroism and nuclear magnetic resonance spectroscopies, detection of posttranslational modifications, assessment of optimal target binding, and testing for impurities and optimal potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2146/ajhp150971 | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFPsychol Rev
January 2025
Department of Cognitive Science, University of California, San Diego.
It has long been hypothesized that episodic memory supports adaptive decision making by enabling mental simulation of future events. Yet, attempts to characterize this process are surprisingly rare. On one hand, memory research is often carried out in settings that are far removed from ecological contexts of decision making.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Background: Crohn's disease (CD) is a chronic, recurrent gastrointestinal disorder characterized by a complex etiology. Among its perianal complications, anal fistulas represent a challenging comorbidity. With the increase of surgical options, a comprehensive bibliometric analysis was deemed necessary to consolidate the vast array of research in this field.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.
Dissolution of the potassium complex [K(ATe)(dme)] (1-Te) in THF, layering with hexanes, and cooling to -30 °C afforded X-ray quality crystals of [K(ATe)(THF)] (2-Te). The K-TeR distances in 2-Te are substantially shorter than those in 1-Te, and DFT and QTAIM calculations support the presence of K-TeR interactions, providing the first unambiguous examples of s-block-telluroether bonding. Attempts to prepare bulk quantities of 2-Te afforded [K(ATe)(THF)] (3-Te), and further drying yielded [K(ATe)(THF)] (4-Te) and [K(ATe)] (5-Te).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!