Background: Microbiology of modern war wounds is unique for each military conflict. Climatic and geographical features of the theater of war, contemporary warfare as well as wound management affect the microbial flora of wounds. This study was designed to determine time-specific microbial flora of combat wounds of upper and lower extremities obtained during the war in eastern Ukraine.
Methods: The patients enrolled in study had combat wounds of upper or lower extremities which were treated in the Military Medical Clinical Center of Central Region. The wounds were swab-cultured and measured at each surgical debridement. The recovered microorganisms were identified and their antimicrobial resistance profiles were evaluated by disc diffusion method.
Results: Forty-nine patients with battle-field wounds were enrolled in the study from July to November 2014; all patients were male with a mean Injury Severity Score and arrival APACHE II scores of 16.2 ± 10.7 and 7.4 ± 4.2 respectively. Among 128 swab cultures, 100 swab cultures were positive. Swab cultures were obtained from 57 wounds of 49 patients. The results of the test showed that 87.7% of all positive swab cultures contained a single-organism while the rest of the swab-culture results showed polymicrobial growth. Among the isolated microorganisms 65% (76 strains) were Gram-negative rods, 22.2% (26 strains) of Gram-positive cocci, followed by Gram-positive rods (12.8%, 15 strains). We found that epidemiology of wound infection changes with the time after injury. The most common bacterial isolates cultured during the first week were Gram-positive microbes with low pathogenicity. The number of Gram-negative rods increased during the wound healing process. The incidence of Gram-positive microorganisms' growth fell after the first week and increased after third week. During wound healing, bacterial microflora of wounds changes with increasing number of Gram-negative rods with predominance of Acinetobacter species. Predominant microorganisms in positive swab-cultures after first week were nonfermentative Gram-negative bacilli (68% of swab-cultures), which in 53% of the swab-cultures belonged to the genus Acinetobacter, and in 15% to the genus Pseudomonas. The incidence of polymicrobial wound cultures increased from first week to second post-injury week. The most frequent microbial mixture were Acinetobacter baumannii with Enterobacteriaceae or other nonfermentative Gram negative rods with Enterococcus spp. We observed bacteria recovery from wounds during proliferation phase. These wounds had no pure inflammation signs and were free of devitalized tissues.
Conclusions: Any wound is at some risk of becoming infected. In the event of infection, a wound fails to heal, treatment costs rise, and general wound management practices become more resource demanding. Determining the microorganisms which colonize battle wounds and cause wound infection is paramount. This information can help to treat battle wound infections or even changes infection control strategies. The fact of shifting in wound microbiology in the favor of bacteria responsible for healthcare-associated infections support to the proposition that these changes are nosocomially related [4, 14]. For Ukrainian military medicine this study is the first time-specified assessment of battle wound colonization from the World War II.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384141 | PMC |
http://dx.doi.org/10.1186/s13104-017-2481-4 | DOI Listing |
Sci Rep
December 2024
Department of Medical Laboratory Science, School of Health Sciences, Kenyatta University, 43844-00100, Nairobi, Kenya.
Gastrointestinal carriage of antimicrobial-resistant bacteria, especially carbapenemase-producing Enterobacterales (CPE), presents a critical public health threat globally. However, in many resource-constrained countries, epidemiological data on CPE is limited. Here, we assessed gastrointestinal carriage and associated factors of CPE among inpatient and outpatient children (≤ 5 years).
View Article and Find Full Text PDFAm J Case Rep
December 2024
Division of Infectious Diseases, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
BACKGROUND Human metapneumovirus (hMPV), classified in the Pneumoviridae family, is primarily known for causing lower respiratory tract infections in children, the elderly, and immunocompromised individuals. However, rare instances have shown that hMPV can also affect other systems, such as the cardiovascular system, leading to conditions like myocarditis. CASE REPORT We describe a 68-year-old man with a medical history of diabetes, hypertension, and liver cirrhosis who presented to the Emergency Department (ED) exhibiting symptoms of fever, cough, and dyspnea.
View Article and Find Full Text PDFInfect Dis Health
December 2024
Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia; Department of Infectious Diseases, Perth Children's Hospital, Nedlands, WA, Australia.
Background: Children spend almost one-third of their waking hours at school. Streptococcus pyogenes (Strep A) is a common childhood bacterial infection that can progress to causing serious disease. We aimed to detect Strep A in classrooms by using environmental settle plates and swabbing of high-touch surfaces in two remote schools in the Kimberley, Western Australia.
View Article and Find Full Text PDFCureus
December 2024
Department of Pathology, College of Medicine, King Saud University, Riyadh, SAU.
, a rare Gram-negative pathogen first identified in 2003, belongs to the family. Although infrequently reported, it has been isolated from various clinical infections, including wounds, and respiratory tract infections. Our case report highlights an unusual presentation of in a 13-year-old girl with a complex medical history, associated with external ear pressure ulcers.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
December 2024
The Centre for Clinical Microbiology, University College London, London, UK.
Introduction: Colonisation and infection with Carbapenem-resistant Enterobacterales (CRE) in healthcare settings poses significant risks, especially for vulnerable patients. Genomic analysis can be used to trace transmission routes, supporting antimicrobial stewardship and informing infection control strategies. Here we used genomic analysis to track the movement and transmission of CREs within clinical and environmental samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!