AI Article Synopsis

  • Teriparatide (TPD) was found to significantly reduce the time-to-union for osteoporotic vertebral compression fractures compared to bisphosphonates (BP), achieving an 89% union rate at six months.
  • Although TPD showed higher rates of surgical intervention, there were no severe complications leading to surgery in the TPD group, unlike the BP group where some patients required surgical treatment.
  • Overall, while TPD may enhance fracture healing, its increased surgical intervention rate suggests further investigation is necessary to evaluate its long-term effects in comparison to bisphosphonates.

Article Abstract

Background: Teriparatide (recombinant human parathyroid hormone 1-34) is increasingly used for the treatment of severe osteoporosis because it stimulates bone formation and may potentially enhance fracture healing. The objective of this study was to investigate the effects of teriparatide versus a bisphosphonate on radiographic outcomes in the treatment of osteoporotic vertebral compression fractures (OVCF).

Methods: A total of 98 patients undergoing non-operative treatment for recent single-level OVCF were reviewed retrospectively. Thirty-eight patients were treated by a once-daily subcutaneous injection of 20 micrograms of teriparatide (TPD group), whereas 60 patients received 35 mg of alendronate weekly (BP group). Except for these medications, the same treatment protocol was applied to both groups. The radiographic assessments included union status, vertebral kyphosis, and mid-vertebral body height. The rates of fracture site surgical intervention were also compared between the two groups. The mean follow-up period was 27 months (median 22.5, range 2 - 75 months).

Results: Cox regression analysis showed that TPD reduced the time-to-union (adjusted relative hazard ratio: 1.86, 95% C.I.: 1.21 - 2.83). The union rate at six months after treatment was 89% in the TPD group and 68% in the BP group; the surgical intervention rate was significantly higher in the TPD group (p = 0.026, adjusted odds ratio: 8.15, 95% C.I.: 2.02 - 43.33). The change in local kyphosis was 4.6° in the TPD group and 3.8° in the BP group (p = 0.495, paired t-test). The change of mid-vertebral body height was 4.4 mm in the TPD group and 3.4 mm in the BP group (p = 0.228, paired t-test). Fracture site surgical interventions were not required in the TPD group; however, two patients in the BP group eventually underwent surgical treatment for symptomatic non-union or vertebral collapse.

Conclusions: This retrospective study suggests that teriparatide may enhance fracture healing and improve the union rate in OVCF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384154PMC
http://dx.doi.org/10.1186/s12891-017-1509-1DOI Listing

Publication Analysis

Top Keywords

tpd group
24
group
11
versus bisphosphonate
8
osteoporotic vertebral
8
vertebral compression
8
enhance fracture
8
fracture healing
8
group patients
8
mid-vertebral body
8
body height
8

Similar Publications

Article Synopsis
  • The study aimed to assess the sensorimotor function in patients with unilateral chronic ankle instability (CAI) and compare their abilities to healthy controls, focusing on sensory reweighting and vestibular modulation.
  • Twenty individuals with unilateral CAI and twenty healthy participants underwent various tests to evaluate ankle proprioception, plantar sensation, balance, and motor control, using a mix of analyses to compare the groups.
  • Results indicated that those with CAI had increased sensory thresholds for light touch and two-point discrimination bilaterally, moderate deficits in certain motor control measures, and showed postural instability in balance tests when compared to healthy controls.
View Article and Find Full Text PDF

The vapor-phase alkylation of phenol with methanol was investigated on X zeolites and modified X zeolites. First, the difference of product distribution was tested between acid zeolite (HZSM-5, HX, HMCM-22, and Hβ) and basic zeolite X (KX and CsX). Then, X zeolites were modified with Li, K, Cs, Ca, Mg, La, and Ce ion exchange to adjust the acid-base properties of the zeolites.

View Article and Find Full Text PDF

Enhanced photocatalytic performance in seawater of donor-acceptor type conjugated polymers through introduction of alkoxy groups in the side chain.

J Colloid Interface Sci

December 2024

Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Electronic address:

Previous studies have demonstrated that the donor (D)-acceptor (A) structure enables conjugated polymers (CPs) to effectively inhibit charge recombination, reduce exciton binding energy to a minimum, and broaden the light absorption spectrum, ultimately enhancing photocatalytic activity. Besides, side chain engineering is an effective approach to enhance photocatalytic performance by regulating surface chemistry and energy band structure of CPs. Herein, three D-A type CPs, namely TPD-T, TPD-MOT and TPD-DOT, were designed and synthesized using thieno[3,4-c]pyrrole-4,6-dione (TPD) as A units and thiophene with different alkyl/alkoxy groups side chain (as 3-octylthiophene (T), 3-methoxythiophene (MOT) and 3,4-ethylenedioxythiophene (DOT)) as D units, via an atom- and step-economic CH/CH cross-coupling polycondensation.

View Article and Find Full Text PDF

Session 5: Protein Degraders.

Toxicol Pathol

December 2024

Rapport Therapeutics, San Diego, California, USA.

The so-called undruggable space is an exciting area of potential growth for drug development. Undruggable proteins are defined as those unable to be targeted via conventional small molecule drugs. New modalities are being developed to potentially target these proteins.

View Article and Find Full Text PDF

Despite significant progress in the catalytic hydrogenation of nitriles, the persistent challenge of requiring additives to prevent condensation byproducts and achieve selectivity toward primary amines demands urgent attention. In this work, we present an integrated approach utilizing a ligand-bridged Ni-Ti bimetallic complex as a precursor to tune Ni-NiO-NiO(OH) heterojunctions and phases of black titania (bTiO) by controlling pyrolytic conditions. This tailored phase distribution and charge dynamics across heterojunctions create an effective balance of acidic and basic sites, enabling the direct hydrogenation of nitriles to primary amines without the need for additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!