Dengue occurrence is partially influenced by the immune status of the population. Consequently, the introduction of a new Dengue virus serotype can trigger explosive epidemics in susceptible populations. The determination of clusters in this scenario can help to identify hotspots and understand the disease dispersion regardless of the influence of the population herd immunity. The present study evaluated the pattern and factors associated with dengue dispersion during the first epidemic related to Dengue virus serotype 4 in Vitória, Espírito Santo state, Brazil. Data on 18,861 dengue cases reported in Vitória from September 2012 to June 2013 were included in the study. The analysis of spatial variation in temporal trend was performed to detect clusters that were compared by their respective relative risk, house index, population density, and income in an ecological study. Overall, 11 clusters were detected. The time trend increase of dengue incidence in the overall study population was 636%. The five clusters that showed a lower time trend increase than the overall population presented a higher incidence in the beginning of the epidemic and, compared to the six clusters with higher time trend increase, they presented higher relative risk for their inhabitants to acquire dengue infection (P-value = 0.02) and a lower income (P-value <0.01). House index and population density did not differ between the clusters. Early increase of dengue incidence and higher relative risk for acquiring dengue infection were favored in low-income areas. Preventive actions and improvement of infrastructure in low-income areas should be prioritized in order to diminish the magnitude of dengue dispersion after the introduction of a new serotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384768PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175432PLOS

Publication Analysis

Top Keywords

dengue virus
12
virus serotype
12
time trend
12
trend increase
12
dengue
9
determination clusters
8
factors associated
8
associated dengue
8
dengue dispersion
8
dispersion epidemic
8

Similar Publications

Introduction: Dengue is a viral infection caused by any one of the four related dengue virus (DENV) serotypes, 1-4. DENV is a single-stranded RNA virus belonging to the genus . Dengue can cause a range of symptoms, from mild to severe life-threatening illness.

View Article and Find Full Text PDF

With the escalation of viral infections in recent decades, including the COVID- 19 pandemic, viral infectious diseases have increasingly become a global concern, attracting significant attention. Among many viral epidemics, the dengue virus, an RNA virus from the Flaviviridae family, has been reported by the WHO as one of the most prevalent mosquito-borne diseases, infecting roughly 400 million people yearly and spreading across all continents worldwide. In the last two decades, researchers from academia and industry have diligently studied many aspects of the virus, including its structure, life cycle, potential therapeutic agents, and vaccines.

View Article and Find Full Text PDF

Background: Urban arboviruses pose a significant global burden, particularly in tropical regions like Brazil. São Sebastião, a lower-middle-class urban area just 26 km from the Brazilian capital, is an endemic area for dengue. However, asymptomatic cases may obscure the actual extent of the disease.

View Article and Find Full Text PDF

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

Transient Expression of Zika NS2B Protein Antigen in and Use for Arboviruses Diagnosis.

ACS Omega

January 2025

Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil.

Zika (ZIKV) and Dengue (DENV) viruses are clinically significant due to their severe neurological and hemorrhagic complications. Rapid diagnostics often rely on nonstructural proteins to generate specific antibodies. This study aimed to produce IgG antibodies from the recombinant ZIKV protein and plant-expressed NS2B protein for arbovirus detection in serum and urine samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!