Induced pluripotent stem cells (iPSCs) are a promising source of mesenchymal stem cells (MSCs) for clinical applications. In this study, we transformed human iPSCs using a non-viral vector carrying the IL24 transgene pHrn-IL24. PCR and southern blotting confirmed IL24 integration into the rDNA loci in four of 68 iPSC clones. We then differentiated a high expressing IL24-iPSC clone into MSCs (IL24-iMSCs) that showed higher expression of IL24 in culture supernatants and in cell lysates than control iMSCs. IL24-iMSCs efficiently differentiated into osteoblasts, chondrocytes and adipocytes. Functionally, IL24-iMSCs induced in vitro apoptosis in B16-F10 melanoma cells more efficiently than control iMSCs when co-cultured in Transwell assays. In vivo tumor xenograft studies in mice demonstrated that IL24-iMSCs inhibited melanoma growth more than control iMSCs did. Immunofluorescence and histochemical analysis showed larger necrotic areas and cell nuclear aggregation in tumors with IL24-iMSCs than control iMSCs, indicating that IL24-iMSCs inhibited tumor growth by inducing apoptosis. These findings demonstrate efficient transformation of iPSCs through gene targeting with non-viral vectors into a rDNA locus. The ability of these genetically modified MSCs to inhibit in vivo melanoma growth is suggestive of the clinical potential of autologous cell therapy in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522332 | PMC |
http://dx.doi.org/10.18632/oncotarget.16584 | DOI Listing |
Arthritis Res Ther
November 2024
GenNBio Inc, 80, Deurimsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17796, Republic of Korea.
J Biol Chem
August 2024
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2024
Orthopedics Department, Longgang District People's Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China.
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
(1) Mesenchymal stem cells (MSCs) are a valuable cell model to study the bone pathology of Osteogenesis Imperfecta (OI), a rare genetic collagen-related disorder characterized by bone fragility and skeletal dysplasia. We aimed to generate a novel OI induced mesenchymal stem cell (iMSC) model from induced pluripotent stem cells (iPSCs) derived from human dermal fibroblasts. For the first time, OI iMSCs generation was based on an intermediate neural crest cell (iNCC) stage.
View Article and Find Full Text PDFInt J Mol Sci
February 2024
Department of Medicine, Medical University of South Carolina, CSB 816, 96 Jonathan Lucas St., Charleston, SC 29425, USA.
Alpha-1 antitrypsin-overexpressing mesenchymal stromal/stem cells (AAT-MSCs) showed improved innate properties with a faster proliferation rate when studied for their protective effects in mouse models of diseases. Here, we investigated the potential mechanism(s) by which AAT gene insertion increases MSC proliferation. Human bone marrow-derived primary or immortalized MSCs (iMSCs) or AAT-MSCs (iAAT-MSCs) were used in the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!