Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 10 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4978581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!