Developing and Validating a Set of All-Atom Potential Models for Sodium Dodecyl Sulfate.

J Chem Theory Comput

Department of Physical Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv 61022, Ukraine.

Published: June 2017

We present a set of novel all-atom potential models for sodium dodecyl sulfate (SDS), developed within the framework of the widely used OPLS-AA and General AMBER force fields. The choice of the parameters for the models is made by rigorously following the methodology of the used force fields to ensure full compatibility with the models for other compounds. For the GAFF model, extensive quantum-chemical computations are performed to obtain reliable Boltzmann-averaged atomic point charges, and the latter are compared with the single-conformation charges. For representation of the hydrocarbon tail, we use recently published improved parameters that correctly reproduce the properties of lipids and long alkanes. The models are validated on the basis of correct reproduction of the main properties of micelles (size, degree of counterion binding) as well as diffusion coefficient of the SDS monomer. As an extended test, a simulation of a micelle with a high aggregation number (382) and unnatural initial shape is performed, and a restructuring to the correct shape is observed. This proves the suitability of the developed models for simulations of concentrated SDS solutions containing large micelles and also emphasizes importance of hydrocarbon tail parameters for the micelle properties. Finally, the developed DS models are tested in combination with several common Na and water models. Their effect on the properties of SDS micelles is discussed, and suitable combinations are determined.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.7b00181DOI Listing

Publication Analysis

Top Keywords

all-atom potential
8
models
8
potential models
8
models sodium
8
sodium dodecyl
8
dodecyl sulfate
8
force fields
8
hydrocarbon tail
8
developed models
8
developing validating
4

Similar Publications

Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

ORF2p (open reading frame 2 protein) is a multifunctional multidomain enzyme that demonstrates both reverse transcriptase and endonuclease activities and is associated with the pathophysiology of cancer. The 3D structure of the entire seven-domain ORF2p complex was revealed with the recent achievements in structural studies. The different arrangements of the CTD (carboxy-terminal domain) and tower domains were identified as the "closed-ring" and "open-ring" conformations, which differed by the hairpin position of the tower domain, but the structural diversity of these complexes has the potential to be more extensive.

View Article and Find Full Text PDF

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Computational Analysis of Missense Mutations: Insight into Protein Structure and Interaction Dynamics.

ACS Chem Neurosci

January 2025

Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye.

is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!