Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one with 12.6 wt % (43.2 g/L).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b01190 | DOI Listing |
Acc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFNat Chem
January 2025
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.
The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.
View Article and Find Full Text PDFCarbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
School of Medical Sciences, Department of Metabolism and Systems Science, WHO Collaborating Centre for Global Women's Health Research, University of Birmingham, Birmingham, UK.
Background: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Accurate diagnosis of PPH can prevent adverse outcomes by enabling early treatment.
Objectives: What is the accuracy of methods (index tests) for diagnosing primary PPH (blood loss ≥ 500 mL in the first 24 hours after birth) and severe primary PPH (blood loss ≥ 1000 mL in the first 24 hours after birth) (target conditions) in women giving birth vaginally (participants) compared to weighed blood loss measurement or other objective measurements of blood loss (reference standards)?
Search Methods: We searched CENTRAL, MEDLINE, Embase, Web of Science Core Collection, ClinicalTrials.
Phys Chem Chem Phys
January 2025
Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.
We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!