Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In structural hierarchy, inherently hollow nanostructured materials preferentially possessing high surface area demand attention due to their alluring sensing performances. However, the activity of hollow and structural hierarchy nanomaterials generally remains suboptimal due to their hollow space structure and large lateral size, which greatly hamper and limit the availability of inner space active sites. Here, hollow ZnSnO cubes with a controllable interior structure were successfully prepared through a simple and low-cost coprecipitation approach followed with a calcination process. The solid-, single-, double-, and multishelled ZnSnO hollow cubes could be selectively tailored by repeated addition of alkaline solution. The multishelled architecture displayed outstanding sensing properties for formaldehyde vapors due to large specific surface area, less agglomerations, abundant interfaces, thin shells, and high proportion porous structure, which act synergistically to facilitate charge transfer and promote target gas adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b03112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!