A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hollow ZnSnO Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors. | LitMetric

Hollow ZnSnO Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors.

ACS Appl Mater Interfaces

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Published: April 2017

In structural hierarchy, inherently hollow nanostructured materials preferentially possessing high surface area demand attention due to their alluring sensing performances. However, the activity of hollow and structural hierarchy nanomaterials generally remains suboptimal due to their hollow space structure and large lateral size, which greatly hamper and limit the availability of inner space active sites. Here, hollow ZnSnO cubes with a controllable interior structure were successfully prepared through a simple and low-cost coprecipitation approach followed with a calcination process. The solid-, single-, double-, and multishelled ZnSnO hollow cubes could be selectively tailored by repeated addition of alkaline solution. The multishelled architecture displayed outstanding sensing properties for formaldehyde vapors due to large specific surface area, less agglomerations, abundant interfaces, thin shells, and high proportion porous structure, which act synergistically to facilitate charge transfer and promote target gas adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b03112DOI Listing

Publication Analysis

Top Keywords

hollow znsno
8
znsno cubes
8
cubes controllable
8
formaldehyde vapors
8
structural hierarchy
8
surface area
8
hollow
6
controllable shells
4
shells enabling
4
enabling highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!